These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 19196979)
1. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Pinchuk GE; Rodionov DA; Yang C; Li X; Osterman AL; Dervyn E; Geydebrekht OV; Reed SB; Romine MF; Collart FR; Scott JH; Fredrickson JK; Beliaev AS Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2874-9. PubMed ID: 19196979 [TBL] [Abstract][Full Text] [Related]
2. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of Kasai T; Suzuki Y; Kouzuma A; Watanabe K Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209 [No Abstract] [Full Text] [Related]
3. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823 [TBL] [Abstract][Full Text] [Related]
4. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Pinchuk GE; Geydebrekht OV; Hill EA; Reed JL; Konopka AE; Beliaev AS; Fredrickson JK Appl Environ Microbiol; 2011 Dec; 77(23):8234-40. PubMed ID: 21965410 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. Rodionov DA; Novichkov PS; Stavrovskaya ED; Rodionova IA; Li X; Kazanov MD; Ravcheev DA; Gerasimova AV; Kazakov AE; Kovaleva GY; Permina EA; Laikova ON; Overbeek R; Romine MF; Fredrickson JK; Arkin AP; Dubchak I; Osterman AL; Gelfand MS BMC Genomics; 2011 Jun; 12 Suppl 1(Suppl 1):S3. PubMed ID: 21810205 [TBL] [Abstract][Full Text] [Related]
6. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions. Nakagawa G; Kouzuma A; Hirose A; Kasai T; Yoshida G; Watanabe K PLoS One; 2015; 10(9):e0138813. PubMed ID: 26394222 [TBL] [Abstract][Full Text] [Related]
7. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells. Li F; Yin C; Sun L; Li Y; Guo X; Song H Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893 [TBL] [Abstract][Full Text] [Related]
8. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. Yang C; Rodionov DA; Li X; Laikova ON; Gelfand MS; Zagnitko OP; Romine MF; Obraztsova AY; Nealson KH; Osterman AL J Biol Chem; 2006 Oct; 281(40):29872-85. PubMed ID: 16857666 [TBL] [Abstract][Full Text] [Related]
9. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. Rodionov DA; Yang C; Li X; Rodionova IA; Wang Y; Obraztsova AY; Zagnitko OP; Overbeek R; Romine MF; Reed S; Fredrickson JK; Nealson KH; Osterman AL BMC Genomics; 2010 Sep; 11():494. PubMed ID: 20836887 [TBL] [Abstract][Full Text] [Related]
10. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Pinchuk GE; Ammons C; Culley DE; Li SM; McLean JS; Romine MF; Nealson KH; Fredrickson JK; Beliaev AS Appl Environ Microbiol; 2008 Feb; 74(4):1198-208. PubMed ID: 18156329 [TBL] [Abstract][Full Text] [Related]
11. CRP Regulates D-Lactate Oxidation in Kasai T; Kouzuma A; Watanabe K Front Microbiol; 2017; 8():869. PubMed ID: 28559887 [No Abstract] [Full Text] [Related]
12. Isobutanol production from an engineered Shewanella oneidensis MR-1. Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214 [TBL] [Abstract][Full Text] [Related]
14. Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis. Sekar R; Shin HD; DiChristina TJ Appl Environ Microbiol; 2016 Jul; 82(13):3996-4005. PubMed ID: 27107127 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of Intracellular Electron Generation in Ishiki K; Shiigi H Anal Chem; 2019 Nov; 91(22):14401-14406. PubMed ID: 31631651 [TBL] [Abstract][Full Text] [Related]
16. The cis-regulatory map of Shewanella genomes. Liu J; Xu X; Stormo GD Nucleic Acids Res; 2008 Sep; 36(16):5376-90. PubMed ID: 18701645 [TBL] [Abstract][Full Text] [Related]
17. Cloning of a Neisseria meningitidis gene for L-lactate dehydrogenase (L-LDH): evidence for a second meningococcal L-LDH with different regulation. Erwin AL; Gotschlich EC J Bacteriol; 1996 Aug; 178(16):4807-13. PubMed ID: 8759842 [TBL] [Abstract][Full Text] [Related]
18. Preferential utilization of D-lactate by Shewanella oneidensis. Brutinel ED; Gralnick JA Appl Environ Microbiol; 2012 Dec; 78(23):8474-6. PubMed ID: 23001660 [TBL] [Abstract][Full Text] [Related]
19. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. Pinchuk GE; Hill EA; Geydebrekht OV; De Ingeniis J; Zhang X; Osterman A; Scott JH; Reed SB; Romine MF; Konopka AE; Beliaev AS; Fredrickson JK; Reed JL PLoS Comput Biol; 2010 Jun; 6(6):e1000822. PubMed ID: 20589080 [TBL] [Abstract][Full Text] [Related]
20. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila. Conley BE; Intile PJ; Bond DR; Gralnick JA Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]