BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19196982)

  • 1. Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors.
    Cubukcu E; Degirmenci F; Kocabas C; Zimmler MA; Rogers JA; Capasso F
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2495-9. PubMed ID: 19196982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film.
    Chen B; Ji Z; Zhou J; Yu Y; Dai X; Lan M; Bu Y; Zhu T; Li Z; Hao J; Chen X
    Nanoscale; 2020 Jun; 12(22):11808-11817. PubMed ID: 32285070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system.
    Klein AE; Janunts N; Steinert M; Tünnermann A; Pertsch T
    Nano Lett; 2014 Sep; 14(9):5010-5. PubMed ID: 25088302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete polarization absorption property of carbon nanotubes studied by using scanning near-field optical microscope.
    Zhang W; Fu Y; Li H; Gu Z; Zhang Z; Zhu X
    Scanning; 2004; 26(5 Suppl 1):I21-5. PubMed ID: 15540808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy.
    Schmidt S; Klein AE; Paul T; Gross H; Diziain S; Steinert M; Assafrao AC; Pertsch T; Urbach HP; Rockstuhl C
    Opt Express; 2016 Feb; 24(4):4128-42. PubMed ID: 26907063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube Far Infrared Detectors with High Responsivity and Superior Polarization Selectivity Based on Engineered Optical Antennas.
    Ren X; Ji Z; Chen B; Zhou J; Chu Z; Chen X
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy.
    Kim ZH; Leone SR
    Opt Express; 2008 Feb; 16(3):1733-41. PubMed ID: 18542252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole.
    Mino T; Saito Y; Verma P
    ACS Nano; 2014 Oct; 8(10):10187-95. PubMed ID: 25171468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.
    Atalay H; Lefrant S
    J Nanosci Nanotechnol; 2004 Sep; 4(7):749-61. PubMed ID: 15570957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution near-field Raman microscopy of single-walled carbon nanotubes.
    Hartschuh A; Sánchez EJ; Xie XS; Novotny L
    Phys Rev Lett; 2003 Mar; 90(9):095503. PubMed ID: 12689234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna.
    Böhmler M; Hartmann N; Georgi C; Hennrich F; Green AA; Hersam MC; Hartschuh A
    Opt Express; 2010 Aug; 18(16):16443-51. PubMed ID: 20721031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips.
    Bozhevolnyi SI; Langbein W; Hvam JM
    J Microsc; 1999; 194(Pt 2-3):500-6. PubMed ID: 11388294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes.
    Wang XJ; Flicker JD; Lee BJ; Ready WJ; Zhang ZM
    Nanotechnology; 2009 May; 20(21):215704. PubMed ID: 19423943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-dependent extraction properties of bare fiber probes.
    Grosjean T; Mivelle M; Burr GW
    Opt Lett; 2010 Feb; 35(3):357-9. PubMed ID: 20125720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities.
    Heeg S; Oikonomou A; Fernandez-Garcia R; Lehmann C; Maier SA; Vijayaraghavan A; Reich S
    Nano Lett; 2014; 14(4):1762-8. PubMed ID: 24605932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subdiffraction-limited far-field Raman spectroscopy of single carbon nanotubes: an unenhanced approach.
    Kaplan-Ashiri I; Titus EJ; Willets KA
    ACS Nano; 2011 Feb; 5(2):1033-41. PubMed ID: 21229967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution.
    Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE
    ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote structuring of near-field landscapes.
    Ginis V; Piccardo M; Tamagnone M; Lu J; Qiu M; Kheifets S; Capasso F
    Science; 2020 Jul; 369(6502):436-440. PubMed ID: 32703876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution.
    Rauhut N; Engel M; Steiner M; Krupke R; Avouris P; Hartschuh A
    ACS Nano; 2012 Jul; 6(7):6416-21. PubMed ID: 22632038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.