These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19196982)

  • 41. Imperfect surface order and functionalization in vertical carbon nanotube arrays probed by near edge X-ray absorption fine structure spectroscopy (NEXAFS).
    Hemraj-Benny T; Banerjee S; Sambasivan S; Fischer DA; Eres G; Puretzky AA; Geohegan DB; Lowndes DH; Misewich JA; Wong SS
    Phys Chem Chem Phys; 2006 Nov; 8(43):5038-44. PubMed ID: 17091154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Subwavelength plasmonic nanoantenna as a Plasmonic Induced Polarization Rotator (PI-PR).
    Hayat Q; Geng J; Liang X; Jin R; Hayat K; He C
    Sci Rep; 2020 Feb; 10(1):2809. PubMed ID: 32071332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarization dependence of the C 1s X-ray absorption spectra of individual multi-walled carbon nanotubes.
    Najafi E; Cruz DH; Obst M; Hitchcock AP; Douhard B; Pireaux JJ; Felten A
    Small; 2008 Dec; 4(12):2279-85. PubMed ID: 18989861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization.
    Fan Z; Tao X; Cui X; Fan X; Zhang X; Dong L
    Nanoscale; 2012 Sep; 4(18):5673-9. PubMed ID: 22875447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unravelling the coupling of surface plasmons in carbon nanotubes by near-field nanoscopy.
    Tian X; Chen R; Chen J
    Nanoscale; 2021 Aug; 13(29):12454-12459. PubMed ID: 34477610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tunable Hyperbolic Metamaterials Based on Self-Assembled Carbon Nanotubes.
    Roberts JA; Yu SJ; Ho PH; Schoeche S; Falk AL; Fan JA
    Nano Lett; 2019 May; 19(5):3131-3137. PubMed ID: 30950280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Length-dependent optical effects in single-wall carbon nanotubes.
    Fagan JA; Simpson JR; Bauer BJ; Lacerda SH; Becker ML; Chun J; Migler KB; Walker AR; Hobbie EK
    J Am Chem Soc; 2007 Aug; 129(34):10607-12. PubMed ID: 17672462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Near-field infrared microscopy of nanometer-sized nickel clusters inside single-walled carbon nanotubes.
    Németh G; Datz D; Pekker Á; Saito T; Domanov O; Shiozawa H; Lenk S; Pécz B; Koppa P; Kamarás K
    RSC Adv; 2019 Oct; 9(59):34120-34124. PubMed ID: 35529972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative imaging of the optical near field.
    Kühler P; García de Abajo FJ; Leiprecht P; Kolloch A; Solis J; Leiderer P; Siegel J
    Opt Express; 2012 Sep; 20(20):22063-78. PubMed ID: 23037356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of terahertz radiation by optical excitation of aligned carbon nanotubes.
    Titova LV; Pint CL; Zhang Q; Hauge RH; Kono J; Hegmann FA
    Nano Lett; 2015 May; 15(5):3267-72. PubMed ID: 25879274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods.
    Zuo T; Goldwyn HJ; Isaacoff BP; Masiello DJ; Biteen JS
    J Phys Chem Lett; 2019 Sep; 10(17):5047-5054. PubMed ID: 31411474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale.
    Seabron E; MacLaren S; Xie X; Rotkin SV; Rogers JA; Wilson WL
    ACS Nano; 2016 Jan; 10(1):360-8. PubMed ID: 26688374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarization-sensitive characterization of the propagating plasmonic modes in silver nanowire waveguide on a glass substrate with a scanning near-field optical microscope.
    Venugopalan P; Zhang Q; Li X; Gu M
    Opt Express; 2013 Jul; 21(13):15247-52. PubMed ID: 23842310
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of near-field Raman enhancement in one-dimensional systems.
    Cançado LG; Jorio A; Ismach A; Joselevich E; Hartschuh A; Novotny L
    Phys Rev Lett; 2009 Oct; 103(18):186101. PubMed ID: 19905816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-scale aligned carbon nanotubes from their purified, highly concentrated suspension.
    Lu L; Chen W
    ACS Nano; 2010 Feb; 4(2):1042-8. PubMed ID: 20088601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes.
    Ilie A; Bendall JS; Nagaoka K; Egger S; Nakayama T; Crampin S
    ACS Nano; 2011 Apr; 5(4):2559-69. PubMed ID: 21370812
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electronic and optical properties of finite carbon nanotubes in an electric field.
    Chen RB; Lee CH; Chang CP; Lin MF
    Nanotechnology; 2007 Feb; 18(7):075704. PubMed ID: 21730512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.