These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19197244)

  • 1. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency.
    Lovmar M; Nilsson K; Lukk E; Vimberg V; Tenson T; Ehrenberg M
    EMBO J; 2009 Mar; 28(6):736-44. PubMed ID: 19197244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics.
    Diner EJ; Hayes CS
    J Mol Biol; 2009 Feb; 386(2):300-15. PubMed ID: 19150357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli.
    Zaman S; Fitzpatrick M; Lindahl L; Zengel J
    Mol Microbiol; 2007 Nov; 66(4):1039-50. PubMed ID: 17956547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA.
    Gregory ST; Dahlberg AE
    J Mol Biol; 1999 Jun; 289(4):827-34. PubMed ID: 10369764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells.
    Chittum HS; Champney WS
    Curr Microbiol; 1995 May; 30(5):273-9. PubMed ID: 7766155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin.
    Davydova N; Streltsov V; Wilce M; Liljas A; Garber M
    J Mol Biol; 2002 Sep; 322(3):635-44. PubMed ID: 12225755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22.
    Gabashvili IS; Gregory ST; Valle M; Grassucci R; Worbs M; Wahl MC; Dahlberg AE; Frank J
    Mol Cell; 2001 Jul; 8(1):181-8. PubMed ID: 11511371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli.
    Chittum HS; Champney WS
    J Bacteriol; 1994 Oct; 176(20):6192-8. PubMed ID: 7928988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications.
    Halling SM; Jensen AE
    BMC Microbiol; 2006 Oct; 6():84. PubMed ID: 17014718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquired resistance to macrolides in M. hominis.
    Pereyre S; Gonzalez P; De Barbeyrac B; Darnige A; Renaudin H; Charron A; Raherison S; Bébéar C; Bébéar CM
    Antimicrob Agents Chemother; 2002 Oct; 46(10):3142-50. PubMed ID: 12234836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics.
    Pelchovich G; Schreiber R; Zhuravlev A; Gophna U
    Int J Med Microbiol; 2013 Dec; 303(8):558-62. PubMed ID: 23972615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22.
    Moore SD; Sauer RT
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18261-6. PubMed ID: 19015512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of ribosomes from erythromycin resistant mutants of Escherichia coli.
    Pardo D; Rosset R
    Mol Gen Genet; 1977 Nov; 156(3):267-71. PubMed ID: 340907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple defects in translation associated with altered ribosomal protein L4.
    O'Connor M; Gregory ST; Dahlberg AE
    Nucleic Acids Res; 2004; 32(19):5750-6. PubMed ID: 15509870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter.
    Corcoran D; Quinn T; Cotter L; Fanning S
    Int J Antimicrob Agents; 2006 Jan; 27(1):40-5. PubMed ID: 16318913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of erythromycin to the 50S ribosomal subunit is affected by alterations in the 30S ribosomal subunit.
    Saltzman L; Apirion D
    Mol Gen Genet; 1976 Feb; 143(3):301-6. PubMed ID: 765762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of resistance to erythromycin in the genus Rickettsia by mutations in L22 ribosomal protein.
    Rolain JM; Raoult D
    J Antimicrob Chemother; 2005 Aug; 56(2):396-8. PubMed ID: 15996971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control.
    Zengel JM; Jerauld A; Walker A; Wahl MC; Lindahl L
    RNA; 2003 Oct; 9(10):1188-97. PubMed ID: 13130133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel.
    Lawrence MG; Lindahl L; Zengel JM
    J Bacteriol; 2008 Sep; 190(17):5862-9. PubMed ID: 18586934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrolide resistance in Campylobacter jejuni and Campylobacter coli: molecular mechanism and stability of the resistance phenotype.
    Gibreel A; Kos VN; Keelan M; Trieber CA; Levesque S; Michaud S; Taylor DE
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2753-9. PubMed ID: 15980346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.