These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19197304)

  • 1. Nanomedicine: shorting neurons with nanotubes.
    Silva GA
    Nat Nanotechnol; 2009 Feb; 4(2):82-3. PubMed ID: 19197304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts.
    Cellot G; Cilia E; Cipollone S; Rancic V; Sucapane A; Giordani S; Gambazzi L; Markram H; Grandolfo M; Scaini D; Gelain F; Casalis L; Prato M; Giugliano M; Ballerini L
    Nat Nanotechnol; 2009 Feb; 4(2):126-33. PubMed ID: 19197316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural stimulation with a carbon nanotube microelectrode array.
    Wang K; Fishman HA; Dai H; Harris JS
    Nano Lett; 2006 Sep; 6(9):2043-8. PubMed ID: 16968023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocarbon surfaces for biomedicine.
    Reina G; Tamburri E; Orlanducci S; Gay S; Matassa R; Guglielmotti V; Lavecchia T; Terranova ML; Rossi M
    Biomatter; 2014; 4():e28537. PubMed ID: 24646883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancement in carbon nanotubes: basics, biomedical applications and toxicity.
    Beg S; Rizwan M; Sheikh AM; Hasnain MS; Anwer K; Kohli K
    J Pharm Pharmacol; 2011 Feb; 63(2):141-63. PubMed ID: 21235578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth.
    Singh N; Chen J; Koziol KK; Hallam KR; Janas D; Patil AJ; Strachan A; G Hanley J; Rahatekar SS
    Nanoscale; 2016 Apr; 8(15):8288-99. PubMed ID: 27031428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and applications of carbon nanotubes in medical nanorobots.
    Popov AM; Lozovik YE; Fiorito S; Yahia L
    Int J Nanomedicine; 2007; 2(3):361-72. PubMed ID: 18019835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric composites containing carbon nanotubes for bone tissue engineering.
    Sahithi K; Swetha M; Ramasamy K; Srinivasan N; Selvamurugan N
    Int J Biol Macromol; 2010 Apr; 46(3):281-3. PubMed ID: 20093139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotechnology in medicine: nanofilm biomaterials.
    Van Tassel PR
    Yale J Biol Med; 2013 Dec; 86(4):527-36. PubMed ID: 24348217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing astroglia with carbon nanotubes: modulation of form and function.
    Gottipati MK; Verkhratsky A; Parpura V
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1654):20130598. PubMed ID: 25225092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Multiwall Carbon Nanotubes Embedded Electroconductive Multi-Microchannel Scaffolds for Neuron Growth under Electrical Stimulation.
    Liu Z; Yushan M; Alike Y; Liu Y; Wu S; Ma C; Yusufu A
    Biomed Res Int; 2020; 2020():4794982. PubMed ID: 32337253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.
    Samadishadlou M; Farshbaf M; Annabi N; Kavetskyy T; Khalilov R; Saghfi S; Akbarzadeh A; Mousavi S
    Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1314-1330. PubMed ID: 29043857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds.
    Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L
    Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.
    Fabbro A; Sucapane A; Toma FM; Calura E; Rizzetto L; Carrieri C; Roncaglia P; Martinelli V; Scaini D; Masten L; Turco A; Gustincich S; Prato M; Ballerini L
    PLoS One; 2013; 8(8):e73621. PubMed ID: 23951361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium.
    Pedrotty DM; Kuzmenko V; Karabulut E; Sugrue AM; Livia C; Vaidya VR; McLeod CJ; Asirvatham SJ; Gatenholm P; Kapa S
    Circ Arrhythm Electrophysiol; 2019 Mar; 12(3):e006920. PubMed ID: 30845835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation.
    Sun Y; Quan Q; Meng H; Zheng Y; Peng J; Hu Y; Feng Z; Sang X; Qiao K; He W; Chi X; Zhao L
    Adv Healthc Mater; 2019 May; 8(10):e1900127. PubMed ID: 30941919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants.
    Usmani S; Aurand ER; Medelin M; Fabbro A; Scaini D; Laishram J; Rosselli FB; Ansuini A; Zoccolan D; Scarselli M; De Crescenzi M; Bosi S; Prato M; Ballerini L
    Sci Adv; 2016 Jul; 2(7):e1600087. PubMed ID: 27453939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering.
    Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z
    Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized carbon nanotubes: revolution in brain delivery.
    Wang JT; Al-Jamal KT
    Nanomedicine (Lond); 2015; 10(17):2639-42. PubMed ID: 26328513
    [No Abstract]   [Full Text] [Related]  

  • 20. Instrumentation: carbon nanotubes on the brain.
    Parpura V
    Nat Nanotechnol; 2008 Jul; 3(7):384-5. PubMed ID: 18654560
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.