BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19197314)

  • 1. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes.
    Heller DA; Jin H; Martinez BM; Patel D; Miller BM; Yeung TK; Jena PV; Höbartner C; Ha T; Silverman SK; Strano MS
    Nat Nanotechnol; 2009 Feb; 4(2):114-20. PubMed ID: 19197314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensors: nanotubes light up cells.
    Krauss TD
    Nat Nanotechnol; 2009 Feb; 4(2):85-6. PubMed ID: 19197307
    [No Abstract]   [Full Text] [Related]  

  • 3. A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring.
    Giraldo JP; Landry MP; Kwak SY; Jain RM; Wong MH; Iverson NM; Ben-Naim M; Strano MS
    Small; 2015 Aug; 11(32):3973-84. PubMed ID: 25981520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of supramolecular nanostructures of carbon nanotubes and ruthenium-complex Luminophores.
    Bottini M; Magrini A; Di Venere A; Bellucci S; Dawson MI; Rosato N; Bergamaschi A; Mustelin T
    J Nanosci Nanotechnol; 2006 May; 6(5):1381-6. PubMed ID: 16792368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing.
    Satishkumar BC; Brown LO; Gao Y; Wang CC; Wang HL; Doorn SK
    Nat Nanotechnol; 2007 Sep; 2(9):560-4. PubMed ID: 18654368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared optical sensors based on single-walled carbon nanotubes.
    Barone PW; Baik S; Heller DA; Strano MS
    Nat Mater; 2005 Jan; 4(1):86-92. PubMed ID: 15592477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes.
    Iverson NM; Barone PW; Shandell M; Trudel LJ; Sen S; Sen F; Ivanov V; Atolia E; Farias E; McNicholas TP; Reuel N; Parry NM; Wogan GN; Strano MS
    Nat Nanotechnol; 2013 Nov; 8(11):873-80. PubMed ID: 24185942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-stranded DNA functionalized single-walled carbon nanotubes for microbiosensors via layer-by-layer electrostatic self-assembly.
    Kang Z; Yan X; Zhang Y; Pan J; Shi J; Zhang X; Liu Y; Choi JH; Porterfield DM
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3784-9. PubMed ID: 24606733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor.
    Liu L; Yang C; Zhao K; Li J; Wu HC
    Nat Commun; 2013; 4():2989. PubMed ID: 24352224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.
    Wang J
    Anal Biochem; 2018 Jun; 550():49-53. PubMed ID: 29655769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic Assemblies of Single-Walled Carbon Nanotubes and Sequence-Tunable Peptoid Polymers Detect a Lectin Protein and Its Target Sugars.
    Chio L; Del Bonis-O'Donnell JT; Kline MA; Kim JH; McFarlane IR; Zuckermann RN; Landry MP
    Nano Lett; 2019 Nov; 19(11):7563-7572. PubMed ID: 30958010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-Templated Molecular Recognition Platforms for Detection of Biological Analytes.
    Beyene AG; Demirer GS; Landry MP
    Curr Protoc Chem Biol; 2016 Sep; 8(3):197-223. PubMed ID: 27622569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling.
    Barone PW; Yoon H; Ortiz-García R; Zhang J; Ahn JH; Kim JH; Strano MS
    ACS Nano; 2009 Dec; 3(12):3869-77. PubMed ID: 19928995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection.
    Kim JH; Heller DA; Jin H; Barone PW; Song C; Zhang J; Trudel LJ; Wogan GN; Tannenbaum SR; Strano MS
    Nat Chem; 2009 Sep; 1(6):473-81. PubMed ID: 21378915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications.
    Boghossian AA; Zhang J; Barone PW; Reuel NF; Kim JH; Heller DA; Ahn JH; Hilmer AJ; Rwei A; Arkalgud JR; Zhang CT; Strano MS
    ChemSusChem; 2011 Jul; 4(7):848-63. PubMed ID: 21751417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes.
    Wang Y; Du J; Li Y; Shan D; Zhou X; Xue Z; Lu X
    Colloids Surf B Biointerfaces; 2012 Feb; 90():62-7. PubMed ID: 22019049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoluminescence imaging of suspended single-walled carbon nanotubes.
    Lefebvre J; Austing DG; Bond J; Finnie P
    Nano Lett; 2006 Aug; 6(8):1603-8. PubMed ID: 16895343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemometric Approaches for Developing Infrared Nanosensors To Image Anthracyclines.
    Del Bonis-O'Donnell JT; Pinals RL; Jeong S; Thakrar A; Wolfinger RD; Landry MP
    Biochemistry; 2019 Jan; 58(1):54-64. PubMed ID: 30480442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes.
    Tsyboulski DA; Bakota EL; Witus LS; Rocha JD; Hartgerink JD; Weisman RB
    J Am Chem Soc; 2008 Dec; 130(50):17134-40. PubMed ID: 19053447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.