BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2629 related articles for article (PubMed ID: 19197906)

  • 1. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry.
    Wang L; Flanagan LA; Monuki E; Jeon NL; Lee AP
    Lab Chip; 2007 Sep; 7(9):1114-20. PubMed ID: 17713608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DC-Dielectrophoretic separation of biological cells by size.
    Kang Y; Li D; Kalams SA; Eid JE
    Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes.
    Khoshmanesh K; Zhang C; Tovar-Lopez FJ; Nahavandi S; Baratchi S; Kalantar-zadeh K; Mitchell A
    Electrophoresis; 2009 Nov; 30(21):3707-17. PubMed ID: 19810028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling two-dimensional movement of microparticles over an electrode array surface.
    Lin JT; Yeow JT; Wan W
    Biomed Microdevices; 2009 Feb; 11(1):193-200. PubMed ID: 18815885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of particles by pulsed dielectrophoresis.
    Cui HH; Voldman J; He XF; Lim KM
    Lab Chip; 2009 Aug; 9(16):2306-12. PubMed ID: 19636460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board.
    Park K; Suk HJ; Akin D; Bashir R
    Lab Chip; 2009 Aug; 9(15):2224-9. PubMed ID: 19606300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
    Lewpiriyawong N; Kandaswamy K; Yang C; Ivanov V; Stocker R
    Anal Chem; 2011 Dec; 83(24):9579-85. PubMed ID: 22035423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S; Çetin B; Oliaei SN; Karpat Y
    Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 132.