These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 19197999)
1. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process. Juliano P; Knoerzer K; Fryer PJ; Versteeg C Biotechnol Prog; 2009; 25(1):163-75. PubMed ID: 19197999 [TBL] [Abstract][Full Text] [Related]
2. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Ahn J; Balasubramaniam VM; Yousef AE Int J Food Microbiol; 2007 Feb; 113(3):321-9. PubMed ID: 17196696 [TBL] [Abstract][Full Text] [Related]
3. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores. Gao YL; Ju XR J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839 [TBL] [Abstract][Full Text] [Related]
4. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium. Tassou CC; Panagou EZ; Samaras FJ; Galiatsatou P; Mallidis CG J Appl Microbiol; 2008 Jun; 104(6):1764-73. PubMed ID: 18298540 [TBL] [Abstract][Full Text] [Related]
5. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Doona CJ; Feeherry FE; Ross EW Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689 [TBL] [Abstract][Full Text] [Related]
6. Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata). Panagou EZ; Tassou CC; Manitsa C; Mallidis C J Appl Microbiol; 2007 Jun; 102(6):1499-507. PubMed ID: 17578414 [TBL] [Abstract][Full Text] [Related]
7. A novel approach to predicting microbial inactivation kinetics during high pressure processing. Koseki S; Yamamoto K Int J Food Microbiol; 2007 May; 116(2):275-82. PubMed ID: 17363099 [TBL] [Abstract][Full Text] [Related]
8. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Chen H Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment. Scurrah KJ; Robertson RE; Craven HM; Pearce LE; Szabo EA J Appl Microbiol; 2006 Jul; 101(1):172-80. PubMed ID: 16834604 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure. Maier MB; Schweiger T; Lenz CA; Vogel RF PLoS One; 2018; 13(7):e0200102. PubMed ID: 29969482 [TBL] [Abstract][Full Text] [Related]
11. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Van Opstal I; Vanmuysen SC; Wuytack EY; Masschalck B; Michiels CW Int J Food Microbiol; 2005 Feb; 98(2):179-91. PubMed ID: 15681045 [TBL] [Abstract][Full Text] [Related]
13. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures. Zhu S; Naim F; Marcotte M; Ramaswamy H; Shao Y Int J Food Microbiol; 2008 Aug; 126(1-2):86-92. PubMed ID: 18593644 [TBL] [Abstract][Full Text] [Related]
15. Interactive software for estimating the efficacy of non-isothermal heat preservation processes. Peleg M; Normand MD; Corradini MG Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264 [TBL] [Abstract][Full Text] [Related]
16. Biphasic inactivation kinetics of Escherichia coli in liquid whole egg by high hydrostatic pressure treatments. Lee DU; Heinz V; Knorr D Biotechnol Prog; 2001; 17(6):1020-5. PubMed ID: 11735435 [TBL] [Abstract][Full Text] [Related]
17. Stochastic and deterministic model of microbial heat inactivation. Corradini MG; Normand MD; Peleg M J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253 [TBL] [Abstract][Full Text] [Related]
18. On quantifying nonthermal effects on the lethality of pressure-assisted heat preservation processes. Peleg M; Corradini MG; Normand MD J Food Sci; 2012 Jan; 77(1):R47-56. PubMed ID: 22260125 [TBL] [Abstract][Full Text] [Related]
19. Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Ahn J; Balasubramaniam VM J Microbiol Biotechnol; 2007 Mar; 17(3):524-9. PubMed ID: 18050959 [TBL] [Abstract][Full Text] [Related]
20. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L J Agric Food Chem; 2006 Dec; 54(26):10300-6. PubMed ID: 17177574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]