BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 19197999)

  • 1. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.
    Juliano P; Knoerzer K; Fryer PJ; Versteeg C
    Biotechnol Prog; 2009; 25(1):163-75. PubMed ID: 19197999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing.
    Ahn J; Balasubramaniam VM; Yousef AE
    Int J Food Microbiol; 2007 Feb; 113(3):321-9. PubMed ID: 17196696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores.
    Gao YL; Ju XR
    J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium.
    Tassou CC; Panagou EZ; Samaras FJ; Galiatsatou P; Mallidis CG
    J Appl Microbiol; 2008 Jun; 104(6):1764-73. PubMed ID: 18298540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata).
    Panagou EZ; Tassou CC; Manitsa C; Mallidis C
    J Appl Microbiol; 2007 Jun; 102(6):1499-507. PubMed ID: 17578414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to predicting microbial inactivation kinetics during high pressure processing.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 May; 116(2):275-82. PubMed ID: 17363099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment.
    Scurrah KJ; Robertson RE; Craven HM; Pearce LE; Szabo EA
    J Appl Microbiol; 2006 Jul; 101(1):172-80. PubMed ID: 16834604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure.
    Maier MB; Schweiger T; Lenz CA; Vogel RF
    PLoS One; 2018; 13(7):e0200102. PubMed ID: 29969482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice.
    Van Opstal I; Vanmuysen SC; Wuytack EY; Masschalck B; Michiels CW
    Int J Food Microbiol; 2005 Feb; 98(2):179-91. PubMed ID: 15681045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures.
    Zhu S; Naim F; Marcotte M; Ramaswamy H; Shao Y
    Int J Food Microbiol; 2008 Aug; 126(1-2):86-92. PubMed ID: 18593644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial inactivation kinetics in soymilk during continuous flow high-pressure throttling.
    Sharma V; Singh RK; Toledo RT
    J Food Sci; 2009 Aug; 74(6):M268-75. PubMed ID: 19723211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biphasic inactivation kinetics of Escherichia coli in liquid whole egg by high hydrostatic pressure treatments.
    Lee DU; Heinz V; Knorr D
    Biotechnol Prog; 2001; 17(6):1020-5. PubMed ID: 11735435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On quantifying nonthermal effects on the lethality of pressure-assisted heat preservation processes.
    Peleg M; Corradini MG; Normand MD
    J Food Sci; 2012 Jan; 77(1):R47-56. PubMed ID: 22260125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological responses of Bacillus amyloliquefaciens spores to high pressure.
    Ahn J; Balasubramaniam VM
    J Microbiol Biotechnol; 2007 Mar; 17(3):524-9. PubMed ID: 18050959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy.
    Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L
    J Agric Food Chem; 2006 Dec; 54(26):10300-6. PubMed ID: 17177574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.