BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19198066)

  • 1. Ubiquitination of Myc: proteasomal degradation and beyond.
    Müller J; Eilers M
    Ernst Schering Found Symp Proc; 2008; (1):99-113. PubMed ID: 19198066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complex of the ubiquitin ligase TRIM32 and the deubiquitinase USP7 balances the level of c-Myc ubiquitination and thereby determines neural stem cell fate specification.
    Nicklas S; Hillje AL; Okawa S; Rudolph IM; Collmann FM; van Wuellen T; Del Sol A; Schwamborn JC
    Cell Death Differ; 2019 Mar; 26(4):728-740. PubMed ID: 29899379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1.
    Xu L; Zhu J; Hu X; Zhu H; Kim HT; LaBaer J; Goldberg A; Yuan J
    Mol Cell; 2007 Dec; 28(5):914-22. PubMed ID: 18082613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity.
    Paul I; Ahmed SF; Bhowmik A; Deb S; Ghosh MK
    Oncogene; 2013 Mar; 32(10):1284-95. PubMed ID: 22543587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of Myc through heterotypic poly-ubiquitination by mLANA is critical for γ-herpesvirus lymphoproliferation.
    Rodrigues L; Popov N; Kaye KM; Simas JP
    PLoS Pathog; 2013; 9(8):e1003554. PubMed ID: 23950719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase.
    Peter S; Bultinck J; Myant K; Jaenicke LA; Walz S; Müller J; Gmachl M; Treu M; Boehmelt G; Ade CP; Schmitz W; Wiegering A; Otto C; Popov N; Sansom O; Kraut N; Eilers M
    EMBO Mol Med; 2014 Dec; 6(12):1525-41. PubMed ID: 25253726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the HECT E3 ligase UBR5 as a regulator of MYC degradation using a CRISPR/Cas9 screen.
    Schukur L; Zimmermann T; Niewoehner O; Kerr G; Gleim S; Bauer-Probst B; Knapp B; Galli GG; Liang X; Mendiola A; Reece-Hoyes J; Rapti M; Barbosa I; Reschke M; Radimerski T; Thoma CR
    Sci Rep; 2020 Nov; 10(1):20044. PubMed ID: 33208877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
    Jaenicke LA; von Eyss B; Carstensen A; Wolf E; Xu W; Greifenberg AK; Geyer M; Eilers M; Popov N
    Mol Cell; 2016 Jan; 61(1):54-67. PubMed ID: 26687678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming Growth Factor β-Induced Proliferative Arrest Mediated by TRIM26-Dependent TAF7 Degradation and Its Antagonism by MYC.
    Nakagawa T; Hosogane M; Nakagawa M; Morohoshi A; Funayama R; Nakayama K
    Mol Cell Biol; 2018 Mar; 38(5):. PubMed ID: 29203640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYC-induced metabolic stress and tumorigenesis.
    Wolpaw AJ; Dang CV
    Biochim Biophys Acta Rev Cancer; 2018 Aug; 1870(1):43-50. PubMed ID: 29791870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth.
    Chen Y; Zhou C; Ji W; Mei Z; Hu B; Zhang W; Zhang D; Wang J; Liu X; Ouyang G; Zhou J; Xiao W
    Nat Commun; 2016 Mar; 7():11057. PubMed ID: 27009366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-inhibition of BET proteins and NF-κB as a potential therapy for colorectal cancer through synergistic inhibiting MYC and FOXM1 expressions.
    Wu T; Wang G; Chen W; Zhu Z; Liu Y; Huang Z; Huang Y; Du P; Yang Y; Liu CY; Cui L
    Cell Death Dis; 2018 Feb; 9(3):315. PubMed ID: 29472532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rabring7 degrades c-Myc through complex formation with MM-1.
    Narita R; Kitaura H; Torii A; Tashiro E; Miyazawa M; Ariga H; Iguchi-Ariga SM
    PLoS One; 2012; 7(7):e41891. PubMed ID: 22844532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E3 ubiquitin ligase FBW7α inhibits cholangiocarcinoma cell proliferation by downregulating c-Myc and cyclin E.
    Li M; Ouyang L; Zheng Z; Xiang D; Ti A; Li L; Dan Y; Yu C; Li W
    Oncol Rep; 2017 Mar; 37(3):1627-1636. PubMed ID: 28184929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myc degradation: dancing with ubiquitin ligases.
    Amati B
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8843-4. PubMed ID: 15187232
    [No Abstract]   [Full Text] [Related]  

  • 16. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.
    Yu Z; Li T; Wang C; Deng S; Zhang B; Huo X; Zhang B; Wang X; Zhong Y; Ma X
    Oncotarget; 2016 Mar; 7(13):15725-37. PubMed ID: 26894970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deubiquitinating c-Myc: USP36 steps up in the nucleolus.
    Sun XX; Sears RC; Dai MS
    Cell Cycle; 2015; 14(24):3786-93. PubMed ID: 26697836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic control of the oncoprotein transcription factor Myc.
    Thomas LR; Tansey WP
    Adv Cancer Res; 2011; 110():77-106. PubMed ID: 21704229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitination of Myc: flipping the switch.
    Boquoi A; Enders G
    Cancer Biol Ther; 2006 Aug; 5(8):907-8. PubMed ID: 16969074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral mutations enhance the Max binding properties of the vMyc b-HLH-LZ domain.
    Crouch DH; Fisher F; La Rocca SA; Goding CR; Gillespie DA
    Nucleic Acids Res; 2005; 33(16):5235-42. PubMed ID: 16166655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.