These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 19198154)

  • 41. The adipokinetic cells in the corpus cardiacum of Locusta migratoria preferentially release young secretory granules.
    Sharp-Baker HE; Diederen JH; Mäkel KM; Peute J; van der Horst DJ
    Eur J Cell Biol; 1995 Nov; 68(3):268-74. PubMed ID: 8603679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity.
    Kutsch W; Berger S; Kautz H
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. When vortices stick: an aerodynamic transition in tiny insect flight.
    Miller LA; Peskin CS
    J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerodynamics of the hovering hummingbird.
    Warrick DR; Tobalske BW; Powers DR
    Nature; 2005 Jun; 435(7045):1094-7. PubMed ID: 15973407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flight performance: Frigatebirds ride high on thermals.
    Weimerskirch H; Chastel O; Barbraud C; Tostain O
    Nature; 2003 Jan; 421(6921):333-4. PubMed ID: 12540890
    [No Abstract]   [Full Text] [Related]  

  • 47. Antennal mechanosensors mediate flight control in moths.
    Sane SP; Dieudonné A; Willis MA; Daniel TL
    Science; 2007 Feb; 315(5813):863-6. PubMed ID: 17290001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport.
    Van der Horst DJ; Rodenburg KW
    J Insect Physiol; 2010 Aug; 56(8):844-53. PubMed ID: 20206629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioural ecology: Winged warnings.
    Ruxton GD
    Nature; 2009 Oct; 461(7264):603-4. PubMed ID: 19794483
    [No Abstract]   [Full Text] [Related]  

  • 51. Kinematics of slow turn maneuvering in the fruit bat Cynopterus brachyotis.
    Iriarte-Díaz J; Swartz SM
    J Exp Biol; 2008 Nov; 211(Pt 21):3478-89. PubMed ID: 18931320
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unconventional lift-generating mechanisms in free-flying butterflies.
    Srygley RB; Thomas AL
    Nature; 2002 Dec; 420(6916):660-4. PubMed ID: 12478291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of flight in relation to the air in Locusta migratoria (Insecta, Orthoptera).
    Gewecke M
    J Physiol (Paris); 1977; 73(4):581-92. PubMed ID: 926042
    [No Abstract]   [Full Text] [Related]  

  • 54. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y; Shen GX
    J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2007 Jun; 210(Pt 11):1912-24. PubMed ID: 17515417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects.
    Ristroph L; Berman GJ; Bergou AJ; Wang ZJ; Cohen I
    J Exp Biol; 2009 May; 212(Pt 9):1324-35. PubMed ID: 19376953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Achievement of high frequencies of motor activity in insects].
    Sviderskiĭ VL
    Usp Fiziol Nauk; 1971; 2(3):105-22. PubMed ID: 4949778
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.