BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 19198346)

  • 1. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes.
    Bajwa N; Li X; Ajayan PM; Vajtai R
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6054-64. PubMed ID: 19198346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-assembled carbon nanotubes: electric field-related effects.
    Levchenko I; Ostrikov K; Keidar M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6112-22. PubMed ID: 19198353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube growth from semiconductor nanoparticles.
    Takagi D; Hibino H; Suzuki S; Kobayashi Y; Homma Y
    Nano Lett; 2007 Aug; 7(8):2272-5. PubMed ID: 17638391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generation of domain boundaries in catalytically-grown carbon nanotubes.
    Dell'Acqua-Bellavitis LM; Ballard JD; Vajtai R; Ajayan PM; Siegel RW
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2335-42. PubMed ID: 17663249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing: nanotechnology meets bubbleology.
    Dalton A; Jurewicz I
    Nat Nanotechnol; 2007 Jun; 2(6):339-40. PubMed ID: 18654300
    [No Abstract]   [Full Text] [Related]  

  • 9. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures.
    Cantoro M; Hofmann S; Pisana S; Scardaci V; Parvez A; Ducati C; Ferrari AC; Blackburn AM; Wang KY; Robertson J
    Nano Lett; 2006 Jun; 6(6):1107-12. PubMed ID: 16771562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow.
    Liu Y; Hong J; Zhang Y; Cui R; Wang J; Tan W; Li Y
    Nanotechnology; 2009 May; 20(18):185601. PubMed ID: 19420617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition.
    Picher M; Anglaret E; Arenal R; Jourdain V
    ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable patterning and CVD growth of isolated carbon nanotubes with direct parallel writing of catalyst using dip-pen nanolithography.
    Kuljanishvili I; Dikin DA; Rozhok S; Mayle S; Chandrasekhar V
    Small; 2009 Nov; 5(22):2523-7. PubMed ID: 19827053
    [No Abstract]   [Full Text] [Related]  

  • 13. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the catalyst during carbon nanotube growth.
    Robertson J; Hofmann S; Cantoro M; Parvez A; Ducati C; Zhong G; Sharma R; Mattevi C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6105-11. PubMed ID: 19198352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tight-binding grand canonical Monte Carlo study of the catalytic growth of carbon nanotubes.
    Amara H; Bichara C; Ducastelle F
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6099-104. PubMed ID: 19198351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.
    Uh HS; Park SS; Kim BW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.
    Cojocaru CS; Senger A; Le Normand F
    J Nanosci Nanotechnol; 2006 May; 6(5):1331-8. PubMed ID: 16792361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of uniform double-walled carbon nanotubes using iron disilicide as catalyst.
    Qi H; Qian C; Liu J
    Nano Lett; 2007 Aug; 7(8):2417-21. PubMed ID: 17655268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.