These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19198356)

  • 1. Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts.
    Monzon A; Lolli G; Cosma S; Mohamed SB; Resasco DE
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6141-52. PubMed ID: 19198356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests.
    Hasegawa K; Noda S; Sugime H; Kakehi K; Maruyama S; Yamaguchi Y
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6123-8. PubMed ID: 19198354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes.
    Ding F; Larsson P; Larsson JA; Ahuja R; Duan H; Rosén A; Bolton K
    Nano Lett; 2008 Feb; 8(2):463-8. PubMed ID: 18162001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tight-binding grand canonical Monte Carlo study of the catalytic growth of carbon nanotubes.
    Amara H; Bichara C; Ducastelle F
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6099-104. PubMed ID: 19198351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.
    Einarsson E; Kadowaki M; Ogura K; Okawa J; Xiang R; Zhang Z; Yamamoto T; Ikuhara Y; Maruyama S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6093-8. PubMed ID: 19198350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.
    Duan H; Rosén A; Harutyunyan A; Curtarolo S; Bolton K
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6170-7. PubMed ID: 19198360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic growth of carbon nanoballs with Co encapsulation from CH4 decomposition: MoOx-promoted shrinking of the carbon nanoball size.
    Zhong Z; Chen F; Xiong X; Soon H; Lin J; Tan KL
    J Nanosci Nanotechnol; 2004; 4(1-2):183-8. PubMed ID: 15112564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diameter modulation of vertically aligned single-walled carbon nanotubes.
    Xiang R; Einarsson E; Murakami Y; Shiomi J; Chiashi S; Tang Z; Maruyama S
    ACS Nano; 2012 Aug; 6(8):7472-9. PubMed ID: 22812723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the catalyst during carbon nanotube growth.
    Robertson J; Hofmann S; Cantoro M; Parvez A; Ducati C; Zhong G; Sharma R; Mattevi C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6105-11. PubMed ID: 19198352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiwalled carbon nanotubes with molybdenum dioxide nanoplugs--new chemical nanoarchitectures by electrochemical modification.
    Jurkschat K; Wilkins SJ; Salter CJ; Leventis HC; Wildgoose GG; Jiang L; Jones TG; Crossley A; Compton RG
    Small; 2006 Jan; 2(1):95-8. PubMed ID: 17193562
    [No Abstract]   [Full Text] [Related]  

  • 13. Formation of pile networks by long carbon nanotubes from decomposition of CO on Co-Mo film.
    Zhu YT; Egeland GW; Li Y; Jia QX; Gallegos J; Serquis A; Liao XZ; Peterson DE; Dye RC; Roop BJ; Hoffbauer MA
    J Nanosci Nanotechnol; 2004; 4(1-2):189-91. PubMed ID: 15112565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis.
    Gökçen T; Dateo CE; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):535-44. PubMed ID: 12908292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.