These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19198619)

  • 1. Does the evolution of viral polymerases reflect the origin and evolution of viruses?
    Krupovic M; Bamford DH
    Nat Rev Microbiol; 2009 Mar; 7(3):250; author reply 250. PubMed ID: 19198619
    [No Abstract]   [Full Text] [Related]  

  • 2. Evolution of tertiary structure of viral RNA dependent polymerases.
    Černý J; Černá Bolfíková B; Valdés JJ; Grubhoffer L; Růžek D
    PLoS One; 2014; 9(5):e96070. PubMed ID: 24816789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the
    Liang B
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32847861
    [No Abstract]   [Full Text] [Related]  

  • 4. Viral polymerases.
    Choi KH
    Adv Exp Med Biol; 2012; 726():267-304. PubMed ID: 22297518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of higher-order foot-and-mouth disease virus 3D(pol) complexes is dependent on elongation activity.
    Bentham M; Holmes K; Forrest S; Rowlands DJ; Stonehouse NJ
    J Virol; 2012 Feb; 86(4):2371-4. PubMed ID: 22156531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural organization of viral RNA-dependent RNA polymerases.
    Shatskaya GS; Dmitrieva TM
    Biochemistry (Mosc); 2013 Mar; 78(3):231-5. PubMed ID: 23586715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double mutations in the H9N2 avian influenza virus PB2 gene act cooperatively to increase viral host adaptation and replication for human infections.
    Elgendy EM; Arai Y; Kawashita N; Isobe A; Daidoji T; Ibrahim MS; Ono T; Takagi T; Nakaya T; Matsumoto K; Watanabe Y
    J Gen Virol; 2021 Jun; 102(6):. PubMed ID: 34061017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PA Mutations Inherited during Viral Evolution Act Cooperatively To Increase Replication of Contemporary H5N1 Influenza Virus with an Expanded Host Range.
    Arai Y; Kawashita N; Elgendy EM; Ibrahim MS; Daidoji T; Ono T; Takagi T; Nakaya T; Matsumoto K; Watanabe Y
    J Virol; 2020 Dec; 95(1):. PubMed ID: 33028722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Unveils Relationships between RNA Virus Polymerases.
    Mönttinen HAM; Ravantti JJ; Poranen MM
    Viruses; 2021 Feb; 13(2):. PubMed ID: 33671332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases.
    Watkins CL; Kempf BJ; Beaucourt S; Barton DJ; Peersen OB
    J Biol Chem; 2020 Jul; 295(31):10624-10637. PubMed ID: 32493771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket.
    Korneeva VS; Cameron CE
    J Biol Chem; 2007 Jun; 282(22):16135-45. PubMed ID: 17400557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding.
    Maier HJ; Kashiwagi T; Hara K; Brownlee GG
    Virology; 2008 Jan; 370(1):194-204. PubMed ID: 17905403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Conserved RNA-dependent RNA Polymerase (RdRp)-RNA Interface Required for Flaviviral Replication.
    Hodge K; Tunghirun C; Kamkaew M; Limjindaporn T; Yenchitsomanus PT; Chimnaronk S
    J Biol Chem; 2016 Aug; 291(33):17437-49. PubMed ID: 27334920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural dynamics as a contributor to error-prone replication by an RNA-dependent RNA polymerase.
    Moustafa IM; Korboukh VK; Arnold JJ; Smidansky ED; Marcotte LL; Gohara DW; Yang X; Sánchez-Farrán MA; Filman D; Maranas JK; Boehr DD; Hogle JM; Colina CM; Cameron CE
    J Biol Chem; 2014 Dec; 289(52):36229-48. PubMed ID: 25378410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-nucleoside Inhibitors of Zika Virus RNA-Dependent RNA Polymerase.
    Gharbi-Ayachi A; Santhanakrishnan S; Wong YH; Chan KWK; Tan ST; Bates RW; Vasudevan SG; El Sahili A; Lescar J
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32796069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Superposition of Viral Polymerase Structures.
    Peersen OB
    Viruses; 2019 Aug; 11(8):. PubMed ID: 31412589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus.
    Brower-Sinning R; Carter DM; Crevar CJ; Ghedin E; Ross TM; Benos PV
    Genome Biol; 2009 Feb; 10(2):R18. PubMed ID: 19216739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling RNA virus replication from transcription via the polymerase: functional and evolutionary insights.
    Wu B; White KA
    EMBO J; 2007 Dec; 26(24):5120-30. PubMed ID: 18034156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationships among RNA-dependent RNA polymerases.
    Ng KK; Arnold JJ; Cameron CE
    Curr Top Microbiol Immunol; 2008; 320():137-56. PubMed ID: 18268843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.
    Poranen MM; Salgado PS; Koivunen MR; Wright S; Bamford DH; Stuart DI; Grimes JM
    Nucleic Acids Res; 2008 Nov; 36(20):6633-44. PubMed ID: 18940872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.