BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 19198653)

  • 21. Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos.
    Hermann M; Maeder ML; Rector K; Ruiz J; Becher B; Bürki K; Khayter C; Aguzzi A; Joung JK; Buch T; Pelczar P
    PLoS One; 2012; 7(9):e41796. PubMed ID: 22970113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases.
    Ochiai H; Fujita K; Suzuki K; Nishikawa M; Shibata T; Sakamoto N; Yamamoto T
    Genes Cells; 2010 Aug; 15(8):875-85. PubMed ID: 20604805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic zinc finger nuclease design and rapid assembly.
    Osborn MJ; DeFeo AP; Blazar BR; Tolar J
    Hum Gene Ther; 2011 Sep; 22(9):1155-65. PubMed ID: 21663559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA).
    Sander JD; Dahlborg EJ; Goodwin MJ; Cade L; Zhang F; Cifuentes D; Curtin SJ; Blackburn JS; Thibodeau-Beganny S; Qi Y; Pierick CJ; Hoffman E; Maeder ML; Khayter C; Reyon D; Dobbs D; Langenau DM; Stupar RM; Giraldez AJ; Voytas DF; Peterson RT; Yeh JR; Joung JK
    Nat Methods; 2011 Jan; 8(1):67-9. PubMed ID: 21151135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted mutagenesis in Arabidopsis using zinc-finger nucleases.
    Zhang F; Voytas DF
    Methods Mol Biol; 2011; 701():167-77. PubMed ID: 21181530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.
    Kim HJ; Lee HJ; Kim H; Cho SW; Kim JS
    Genome Res; 2009 Jul; 19(7):1279-88. PubMed ID: 19470664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging gene knockout technology in zebrafish: zinc-finger nucleases.
    Amacher SL
    Brief Funct Genomic Proteomic; 2008 Nov; 7(6):460-4. PubMed ID: 19109309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.
    Weber ND; Stone D; Sedlak RH; De Silva Feelixge HS; Roychoudhury P; Schiffer JT; Aubert M; Jerome KR
    PLoS One; 2014; 9(5):e97579. PubMed ID: 24827459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc-finger nuclease based genome surgery: it's all about specificity.
    Händel EM; Cathomen T
    Curr Gene Ther; 2011 Feb; 11(1):28-37. PubMed ID: 21182467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adding fingers to an engineered zinc finger nuclease can reduce activity.
    Shimizu Y; Şöllü C; Meckler JF; Adriaenssens A; Zykovich A; Cathomen T; Segal DJ
    Biochemistry; 2011 Jun; 50(22):5033-41. PubMed ID: 21528840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeatable construction method for engineered zinc finger nuclease based on overlap extension PCR and TA-cloning.
    Fujii W; Kano K; Sugiura K; Naito K
    PLoS One; 2013; 8(3):e59801. PubMed ID: 23536890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted disruption of exogenous EGFP gene in medaka using zinc-finger nucleases.
    Ansai S; Ochiai H; Kanie Y; Kamei Y; Gou Y; Kitano T; Yamamoto T; Kinoshita M
    Dev Growth Differ; 2012 Jun; 54(5):546-56. PubMed ID: 22642582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential application of FoldX force field based protein modeling in zinc finger nucleases design.
    He Z; Mei G; Zhao C; Chen Y
    Sci China Life Sci; 2011 May; 54(5):442-9. PubMed ID: 21455692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases.
    Osiak A; Radecke F; Guhl E; Radecke S; Dannemann N; Lütge F; Glage S; Rudolph C; Cantz T; Schwarz K; Heilbronn R; Cathomen T
    PLoS One; 2011; 6(12):e28911. PubMed ID: 22194948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inducing high rates of targeted mutagenesis in zebrafish using zinc finger nucleases (ZFNs).
    McCammon JM; Doyon Y; Amacher SL
    Methods Mol Biol; 2011; 770():505-27. PubMed ID: 21805278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc-finger nucleases: a powerful tool for genetic engineering of animals.
    Rémy S; Tesson L; Ménoret S; Usal C; Scharenberg AM; Anegon I
    Transgenic Res; 2010 Jun; 19(3):363-71. PubMed ID: 19821047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A transient assay for monitoring zinc finger nuclease activity at endogenous plant gene targets.
    Hoshaw JP; Unger-Wallace E; Zhang F; Voytas DF
    Methods Mol Biol; 2010; 649():299-313. PubMed ID: 20680843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways.
    Qi Y; Zhang Y; Zhang F; Baller JA; Cleland SC; Ryu Y; Starker CG; Voytas DF
    Genome Res; 2013 Mar; 23(3):547-54. PubMed ID: 23282329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining.
    Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR
    Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.