These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19198667)

  • 21. Neural simulations on multi-core architectures.
    Eichner H; Klug T; Borst A
    Front Neuroinform; 2009; 3():21. PubMed ID: 19636393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GPUPeP: Parallel Enzymatic Numerical P System simulator with a Python-based interface.
    Raghavan S; Rai SS; Rohit MP; Chandrasekaran K
    Biosystems; 2020 Oct; 196():104186. PubMed ID: 32535178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pypet: A Python Toolkit for Data Management of Parameter Explorations.
    Meyer R; Obermayer K
    Front Neuroinform; 2016; 10():38. PubMed ID: 27610080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PyGeNN: A Python Library for GPU-Enhanced Neural Networks.
    Knight JC; Komissarov A; Nowotny T
    Front Neuroinform; 2021; 15():659005. PubMed ID: 33967731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SciPy 1.0: fundamental algorithms for scientific computing in Python.
    Virtanen P; Gommers R; Oliphant TE; Haberland M; Reddy T; Cournapeau D; Burovski E; Peterson P; Weckesser W; Bright J; van der Walt SJ; Brett M; Wilson J; Millman KJ; Mayorov N; Nelson ARJ; Jones E; Kern R; Larson E; Carey CJ; Polat İ; Feng Y; Moore EW; VanderPlas J; Laxalde D; Perktold J; Cimrman R; Henriksen I; Quintero EA; Harris CR; Archibald AM; Ribeiro AH; Pedregosa F; van Mulbregt P;
    Nat Methods; 2020 Mar; 17(3):261-272. PubMed ID: 32015543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.
    Drewes R; Zou Q; Goodman PH
    Front Neuroinform; 2009; 3():16. PubMed ID: 19506707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trends in programming languages for neuroscience simulations.
    Davison AP; Hines ML; Muller E
    Front Neurosci; 2009; 3(3):374-80. PubMed ID: 20198154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience.
    Tennøe S; Halnes G; Einevoll GT
    Front Neuroinform; 2018; 12():49. PubMed ID: 30154710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.
    Kunkel S; Schenck W
    Front Neuroinform; 2017; 11():40. PubMed ID: 28701946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural system prediction and identification challenge.
    Vlachos I; Zaytsev YV; Spreizer S; Aertsen A; Kumar A
    Front Neuroinform; 2013; 7():43. PubMed ID: 24399966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.
    Lytton WW; Seidenstein AH; Dura-Bernal S; McDougal RA; Schürmann F; Hines ML
    Neural Comput; 2016 Oct; 28(10):2063-90. PubMed ID: 27557104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn.
    Yegenoglu A; Subramoney A; Hater T; Jimenez-Romero C; Klijn W; Pérez Martín A; van der Vlag M; Herty M; Morrison A; Diaz-Pier S
    Front Comput Neurosci; 2022; 16():885207. PubMed ID: 35720775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.
    Potjans W; Morrison A; Diesmann M
    Front Comput Neurosci; 2010; 4():141. PubMed ID: 21151370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Virtual Brain: a simulator of primate brain network dynamics.
    Sanz Leon P; Knock SA; Woodman MM; Domide L; Mersmann J; McIntosh AR; Jirsa V
    Front Neuroinform; 2013; 7():10. PubMed ID: 23781198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience.
    Vella M; Cannon RC; Crook S; Davison AP; Ganapathy G; Robinson HP; Silver RA; Gleeson P
    Front Neuroinform; 2014; 8():38. PubMed ID: 24795618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CVXPY: A Python-Embedded Modeling Language for Convex Optimization.
    Diamond S; Boyd S
    J Mach Learn Res; 2016 Apr; 17():. PubMed ID: 27375369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NEURON and Python.
    Hines ML; Davison AP; Muller E
    Front Neuroinform; 2009; 3():1. PubMed ID: 19198661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.