These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19198755)

  • 1. Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model.
    Horan RL; Bramono DS; Stanley JR; Simmons Q; Chen J; Boepple HE; Altman GH
    Hernia; 2009 Apr; 13(2):189-99. PubMed ID: 19198755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion of Hernia Repair with High-Strength, Flexible, and Bioresorbable Silk Fibroin Mesh in a Large Abdominal Hernia Model.
    Zhang W; Li Y; Jiang D; Xie S; Zeng M; Chen J; Chen L; Ouyang H; Zou X
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2067-2080. PubMed ID: 33445278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preclinical evaluation of alternative synthetic biomaterials for fascial defect repair using a rat abdominal hernia model.
    Ulrich D; Edwards SL; White JF; Supit T; Ramshaw JA; Lo C; Rosamilia A; Werkmeister JA; Gargett CE
    PLoS One; 2012; 7(11):e50044. PubMed ID: 23185528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical compatibility of surgical mesh and fascia being reinforced: dependence of experimental hernia defect repair results on anisotropic surgical mesh positioning.
    Anurov MV; Titkova SM; Oettinger AP
    Hernia; 2012 Apr; 16(2):199-210. PubMed ID: 21909779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a novel silk mesh for ventral midline hernioplasty in a mare.
    Haupt J; García-López JM; Chope K
    BMC Vet Res; 2015 Mar; 11():58. PubMed ID: 25879822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect.
    Costa A; Naranjo JD; Turner NJ; Swinehart IT; Kolich BD; Shaffiey SA; Londono R; Keane TJ; Reing JE; Johnson SA; Badylak SF
    Biomaterials; 2016 Nov; 108():81-90. PubMed ID: 27619242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia.
    Bellon JM; Rodriguez M; Garcia-Honduvilla N; Gomez-Gil V; Pascual G; Bujan J
    J Invest Surg; 2008; 21(5):280-7. PubMed ID: 19160136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair.
    Deeken CR; Lake SP
    J Mech Behav Biomed Mater; 2017 Oct; 74():411-427. PubMed ID: 28692907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdominal wall reinforcement: biologic vs. degradable synthetic devices.
    Gruber-Blum S; Brand J; Keibl C; Fortelny RH; Redl H; Mayer F; Petter-Puchner AH
    Hernia; 2017 Apr; 21(2):305-315. PubMed ID: 28012032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical abdominal wall model applied to hernia repair.
    Lyons M; Mohan H; Winter DC; Simms CK
    Br J Surg; 2015 Jan; 102(2):e133-9. PubMed ID: 25627126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications.
    Martin DP; Badhwar A; Shah DV; Rizk S; Eldridge SN; Gagne DH; Ganatra A; Darois RE; Williams SF; Tai HC; Scott JR
    J Surg Res; 2013 Oct; 184(2):766-73. PubMed ID: 23582230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-butyl cyanoacrylate versus conventional suturing for fixation of meshes in an incisional hernia model.
    Dilege E; Deveci U; Erbil Y; Dinççağ A; Seven R; Ozarmagan S; Mercan S; Barbaros U
    J Invest Surg; 2010 Oct; 23(5):262-6. PubMed ID: 20874481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion formation and reherniation differ between meshes used for abdominal wall reconstruction.
    Sikkink CJ; Vries de Reilingh TS; Malyar AW; Jansen JA; Bleichrodt RP; van Goor H
    Hernia; 2006 Jun; 10(3):218-22. PubMed ID: 16482401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resterilized mesh in repair of abdominal wall defects in rats.
    Sucullu I; Akin ML; Yitgin S; Filiz AI; Kurt Y
    J Invest Surg; 2008; 21(4):171-6. PubMed ID: 18615313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a Rat Model to Study Ventral Abdominal Hernia Repair.
    Suckow MA; Duke Boynton FD; Johnson C
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 28994802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abdominal wall hernia repair: a comparison of Permacol and Surgisis grafts in a rat hernia model.
    Ayubi FS; Armstrong PJ; Mattia MS; Parker DM
    Hernia; 2008 Aug; 12(4):373-8. PubMed ID: 18330666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.
    Ulrich D; Edwards SL; Alexander DLJ; Rosamilia A; Werkmeister JA; Gargett CE; Letouzey V
    Am J Obstet Gynecol; 2016 Feb; 214(2):260.e1-260.e8. PubMed ID: 26348376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Surgisis, AlloDerm, and Vicryl Woven Mesh grafts for abdominal wall defect repair in an animal model.
    Rice RD; Ayubi FS; Shaub ZJ; Parker DM; Armstrong PJ; Tsai JW
    Aesthetic Plast Surg; 2010 Jun; 34(3):290-6. PubMed ID: 19967358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resorbable Synthetic Meshes for Abdominal Wall Defects in Preclinical Setting: A Literature Review.
    Miserez M; Jairam AP; Boersema GSA; Bayon Y; Jeekel J; Lange JF
    J Surg Res; 2019 May; 237():67-75. PubMed ID: 30710881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a new dual mesh with an absorbable nanofiber layer as a potential implant for abdominal hernia treatment.
    Kaya M; Ahi ZB; Ergene E; Yilgor Huri P; Tuzlakoglu K
    J Tissue Eng Regen Med; 2020 Feb; 14(2):347-354. PubMed ID: 31826319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.