These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi. Müller WE; Wendt K; Geppert C; Wiens M; Reiber A; Schröder HC Biosens Bioelectron; 2006 Jan; 21(7):1149-55. PubMed ID: 15935634 [TBL] [Abstract][Full Text] [Related]
3. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502 [TBL] [Abstract][Full Text] [Related]
5. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Sethmann I; Wörheide G Micron; 2008; 39(3):209-28. PubMed ID: 17360189 [TBL] [Abstract][Full Text] [Related]
6. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Uriz MJ; Turon X; Becerro MA; Agell G Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903 [TBL] [Abstract][Full Text] [Related]
7. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. Wang X; Schröder HC; Müller WE Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903 [TBL] [Abstract][Full Text] [Related]
9. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Ehrlich H; Krautter M; Hanke T; Simon P; Knieb C; Heinemann S; Worch H J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):473-83. PubMed ID: 17520693 [TBL] [Abstract][Full Text] [Related]
10. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Aizenberg J; Weaver JC; Thanawala MS; Sundar VC; Morse DE; Fratzl P Science; 2005 Jul; 309(5732):275-8. PubMed ID: 16002612 [TBL] [Abstract][Full Text] [Related]
11. Comments on a skeleton design paradigm for a demosponge. Aluma Y; Ilan M; Sherman D J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685 [TBL] [Abstract][Full Text] [Related]
12. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis. Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field. Cao X; Fu W; Yu X; Zhang W Cell Tissue Res; 2007 Sep; 329(3):595-608. PubMed ID: 17593397 [TBL] [Abstract][Full Text] [Related]
14. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578 [TBL] [Abstract][Full Text] [Related]
15. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984 [TBL] [Abstract][Full Text] [Related]
16. Biological glass fibers: correlation between optical and structural properties. Aizenberg J; Sundar VC; Yablon AD; Weaver JC; Chen G Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3358-63. PubMed ID: 14993612 [TBL] [Abstract][Full Text] [Related]
17. [Morphological, optical, and structural characteristics of glass sponge spicules and the photoreceptor hypothesis of their survival]. Voznesenskiĭ SS; Kul'chin IuN; Galkina AN; Sergeev AA Biofizika; 2010; 55(1):107-12. PubMed ID: 20184148 [TBL] [Abstract][Full Text] [Related]
18. Nano-cluster composite structure of calcitic sponge spicules--a case study of basic characteristics of biominerals. Sethmann I; Hinrichs R; Wörheide G; Putnis A J Inorg Biochem; 2006 Jan; 100(1):88-96. PubMed ID: 16321444 [TBL] [Abstract][Full Text] [Related]
19. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Müller WE; Eckert C; Kropf K; Wang X; Schlossmacher U; Seckert C; Wolf SE; Tremel W; Schröder HC Cell Tissue Res; 2007 Aug; 329(2):363-78. PubMed ID: 17406901 [TBL] [Abstract][Full Text] [Related]
20. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Ehrlich H; Deutzmann R; Brunner E; Cappellini E; Koon H; Solazzo C; Yang Y; Ashford D; Thomas-Oates J; Lubeck M; Baessmann C; Langrock T; Hoffmann R; Wörheide G; Reitner J; Simon P; Tsurkan M; Ereskovsky AV; Kurek D; Bazhenov VV; Hunoldt S; Mertig M; Vyalikh DV; Molodtsov SL; Kummer K; Worch H; Smetacek V; Collins MJ Nat Chem; 2010 Dec; 2(12):1084-8. PubMed ID: 21107374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]