These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19198827)

  • 1. Intrinsic viscosity of bead models for macromolecules and nanoparticles.
    García de la Torre J; Amorós D; Ortega A
    Eur Biophys J; 2010 Feb; 39(3):381-8. PubMed ID: 19198827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic multibead modeling: problems, pitfalls, and solutions. 1. Ellipsoid models.
    Zipper P; Durchschlag H
    Eur Biophys J; 2010 Feb; 39(3):437-47. PubMed ID: 19280183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved calculation of rotational diffusion and intrinsic viscosity of bead models for macromolecules and nanoparticles.
    de la Torre JG; Echenique Gdel R; Ortega A
    J Phys Chem B; 2007 Feb; 111(5):955-61. PubMed ID: 17266248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
    Zuk PJ; Cichocki B; Szymczak P
    Biophys J; 2018 Sep; 115(5):782-800. PubMed ID: 30144937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules.
    Giupponi G; De Fabritiis G; Coveney PV
    J Chem Phys; 2007 Apr; 126(15):154903. PubMed ID: 17461663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic electro-optic properties of macromolecules and nanoparticles in solution: a review of computational and simulation methodologies.
    García de la Torre J
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):4-15. PubMed ID: 17125977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic multibead modeling: problems, pitfalls and solutions. 3. Comparison of new approaches for improved predictions of translational properties.
    Zipper P; Durchschlag H
    Eur Biophys J; 2013 Jul; 42(7):559-73. PubMed ID: 23700224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties.
    Ortega A; Amorós D; García de la Torre J
    Methods; 2011 May; 54(1):115-23. PubMed ID: 21163355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres.
    Carrasco B; García de la Torre J; Zipper P
    Eur Biophys J; 1999; 28(6):510-5. PubMed ID: 10460344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.
    Brookes E; Demeler B; Rosano C; Rocco M
    Eur Biophys J; 2010 Feb; 39(3):423-35. PubMed ID: 19234696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic viscosity of bead models for macromolecules and bioparticles.
    Gmachowski L
    Eur Biophys J; 2001 Oct; 30(6):453-6. PubMed ID: 11718299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity calculation of a nanoparticle suspension confined in nanochannels.
    Wang Y; Keblinski P; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036313. PubMed ID: 23031019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the two-body diffusion tensor calculated by the bead models.
    Wang N; Huber GA; McCammon JA
    J Chem Phys; 2013 May; 138(20):204117. PubMed ID: 23742464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology.
    Gillis RB; Rowe AJ; Adams GG; Harding SE
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):142-57. PubMed ID: 25686159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.
    Brown PH; Schuck P
    Biophys J; 2006 Jun; 90(12):4651-61. PubMed ID: 16565040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the separation of macromolecules: a review of current computer simulation methods.
    Slater GW; Holm C; Chubynsky MV; de Haan HW; Dubé A; Grass K; Hickey OA; Kingsburry C; Sean D; Shendruk TN; Zhan L
    Electrophoresis; 2009 Mar; 30(5):792-818. PubMed ID: 19260004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures.
    Carrasco B; García de la Torre J
    Biophys J; 1999 Jun; 76(6):3044-57. PubMed ID: 10354430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combination of the viscosity increment with the harmonic mean rotational relaxation time for determining the conformation of biological macromolecules in solution.
    Harding SE
    Biochem J; 1980 Aug; 189(2):359-61. PubMed ID: 7458917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic multibead modeling: problems, pitfalls, and solutions. 2. Proteins.
    Zipper P; Durchschlag H
    Eur Biophys J; 2010 Feb; 39(3):481-95. PubMed ID: 19308400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.