These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19198827)

  • 21. Nonuniform Crowding Enhances Transport.
    Collins M; Mohajerani F; Ghosh S; Guha R; Lee TH; Butler PJ; Sen A; Velegol D
    ACS Nano; 2019 Aug; 13(8):8946-8956. PubMed ID: 31291087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isoelectric point determination of proteins and other macromolecules: oscillating method.
    Sillero A; Maldonado A
    Comput Biol Med; 2006 Feb; 36(2):157-66. PubMed ID: 16389075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheology of a reversible supramolecular polymer studied by comparison of the effects of temperature and chain stoppers.
    Knoben W; Besseling NA; Cohen Stuart MA
    J Chem Phys; 2007 Jan; 126(2):024907. PubMed ID: 17228973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coarse-grained simulations of macromolecules: from DNA to nanocomposites.
    de Pablo JJ
    Annu Rev Phys Chem; 2011; 62():555-74. PubMed ID: 21219152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Order parameters for macromolecules: application to multiscale simulation.
    Singharoy A; Cheluvaraja S; Ortoleva P
    J Chem Phys; 2011 Jan; 134(4):044104. PubMed ID: 21280684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macromolecular recognition.
    Deremble C; Lavery R
    Curr Opin Struct Biol; 2005 Apr; 15(2):171-5. PubMed ID: 15837175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid or flexible bead models.
    Garcia de la Torre J; Ortega A; Perez Sanchez HE; Hernandez Cifre JG
    Biophys Chem; 2005 Jul; 116(2):121-8. PubMed ID: 15950824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction and analysis of analytical ultracentrifugation experiments for heterogeneous macromolecules and nanoparticles based on Brownian dynamics simulation.
    de la Torre JG; Cifre JGH; Peña AID
    Eur Biophys J; 2018 Oct; 47(7):845-854. PubMed ID: 30030576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-selective nanoparticle growth on few-layer graphene films.
    Luo Z; Somers LA; Dan Y; Ly T; Kybert NJ; Mele EJ; Johnson AT
    Nano Lett; 2010 Mar; 10(3):777-81. PubMed ID: 20112928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model.
    Phenrat T; Song JE; Cisneros CM; Schoenfelder DP; Tilton RD; Lowry GV
    Environ Sci Technol; 2010 Jun; 44(12):4531-8. PubMed ID: 20465214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of an amphiphilic macromolecule under spherical confinement: an efficient route to generate hollow nanospheres.
    Glagoleva AA; Vasilevskaya VV; Yoshikawa K; Khokhlov AR
    J Chem Phys; 2013 Dec; 139(24):244901. PubMed ID: 24387390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport properties of nanosystems: viscosity of nanofluids confined in slit nanopores.
    Pozhar LA; Kontar EP; Hu MZ
    J Nanosci Nanotechnol; 2002 Apr; 2(2):209-27. PubMed ID: 12908311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-center-multipole expansion method: application to macromolecular systems.
    Solov'yov IA; Yakubovich AV; Solov'yov AV; Greiner W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051912. PubMed ID: 17677103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold bead-strings in silica nanowires: a simple diffusion model.
    Fletcher NH; Elliman RG; Kim TH
    Nanotechnology; 2009 Feb; 20(8):085613. PubMed ID: 19417461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.
    Byron O
    Biophys J; 1997 Jan; 72(1):408-15. PubMed ID: 8994627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Normal mode analysis using the driven molecular dynamics method. II. An application to biological macromolecules.
    Kaledin M; Brown A; Kaledin AL; Bowman JM
    J Chem Phys; 2004 Sep; 121(12):5646-53. PubMed ID: 15366988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size and average density spectra of macromolecules obtained from hydrodynamic data.
    Pavlov GM
    Eur Phys J E Soft Matter; 2007 Feb; 22(2):171-80. PubMed ID: 17377754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symmetry, form, and shape: guiding principles for robustness in macromolecular machines.
    Tama F; Brooks CL
    Annu Rev Biophys Biomol Struct; 2006; 35():115-33. PubMed ID: 16689630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of nanoparticle concentration on thermo-physical properties of CuO-propylene glycol nanofluids.
    Suganthi KS; Radhakrishnan AK; Anusha N; Rajan KS
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4602-7. PubMed ID: 24738436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer simulation of hydrodynamic properties of semiflexible macromolecules: randomly broken chains, wormlike chains, and analysis of properties of DNA.
    García Molina JJ; López Martínez MC; García de la Torre J
    Biopolymers; 1990; 29(6-7):883-900. PubMed ID: 2369619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.