BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19198897)

  • 1. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
    Mitra S; Sheppard G; Wang J; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 May; 14(4):573-85. PubMed ID: 19198897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus.
    Copik AJ; Nocek BP; Swierczek SI; Ruebush S; Jang SB; Meng L; D'souza VM; Peters JW; Bennett B; Holz RC
    Biochemistry; 2005 Jan; 44(1):121-9. PubMed ID: 15628852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new colorimetric assay for methionyl aminopeptidases: examination of the binding of a new class of pseudopeptide analog inhibitors.
    Mitra S; Dygas-Holz AM; Jiracek J; Zertova M; Zakova L; Holz RC
    Anal Biochem; 2006 Oct; 357(1):43-9. PubMed ID: 16844071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 1.15A crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors.
    Oefner C; Douangamath A; D'Arcy A; Häfeli S; Mareque D; Mac Sweeney A; Padilla J; Pierau S; Schulz H; Thormann M; Wadman S; Dale GE
    J Mol Biol; 2003 Sep; 332(1):13-21. PubMed ID: 12946343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular discrimination of type-I over type-II methionyl aminopeptidases.
    Swierczek K; Copik AJ; Swierczek SI; Holz RC
    Biochemistry; 2005 Sep; 44(36):12049-56. PubMed ID: 16142902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
    Mitra S; Job KM; Meng L; Bennett B; Holz RC
    FEBS J; 2008 Dec; 275(24):6248-59. PubMed ID: 19019076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
    Meng L; Ruebush S; D'souza VM; Copik AJ; Tsunasawa S; Holz RC
    Biochemistry; 2002 Jun; 41(23):7199-208. PubMed ID: 12044150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity for inhibitors of metal-substituted methionine aminopeptidase.
    Li JY; Chen LL; Cui YM; Luo QL; Li J; Nan FJ; Ye QZ
    Biochem Biophys Res Commun; 2003 Jul; 307(1):172-9. PubMed ID: 12849997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural characterization of manganese(II)-loaded methionyl aminopeptidases.
    D'souza VM; Swierczek SI; Cosper NJ; Meng L; Ruebush S; Copik AJ; Scott RA; Holz RC
    Biochemistry; 2002 Oct; 41(43):13096-105. PubMed ID: 12390038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the methionine aminopeptidases.
    Lowther WT; Matthews BW
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):157-67. PubMed ID: 10708856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and spectroscopic analysis of the catalytic role of H79 in the methionine aminopeptidase from Escherichia coli.
    Watterson SJ; Mitra S; Swierczek SI; Bennett B; Holz RC
    Biochemistry; 2008 Nov; 47(45):11885-93. PubMed ID: 18855426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
    Li JY; Cui YM; Chen LL; Gu M; Li J; Nan FJ; Ye QZ
    J Biol Chem; 2004 May; 279(20):21128-34. PubMed ID: 14976199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FE(II) is the native cofactor for Escherichia coli methionine aminopeptidase.
    Chai SC; Wang WL; Ye QZ
    J Biol Chem; 2008 Oct; 283(40):26879-85. PubMed ID: 18669631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli.
    D'souza VM; Bennett B; Copik AJ; Holz RC
    Biochemistry; 2000 Apr; 39(13):3817-26. PubMed ID: 10736182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme.
    D'souza VM; Holz RC
    Biochemistry; 1999 Aug; 38(34):11079-85. PubMed ID: 10460163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of metalloform-selective inhibition of methionine aminopeptidase.
    Xie SX; Huang WJ; Ma ZQ; Huang M; Hanzlik RP; Ye QZ
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):425-32. PubMed ID: 16552144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalloform-selective inhibitors of escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor.
    Ye QZ; Xie SX; Huang M; Huang WJ; Lu JP; Ma ZQ
    J Am Chem Soc; 2004 Nov; 126(43):13940-1. PubMed ID: 15506752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase.
    Lu JP; Chai SC; Ye QZ
    J Med Chem; 2010 Feb; 53(3):1329-37. PubMed ID: 20038112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors.
    Poreba M; Gajda A; Picha J; Jiracek J; Marschner A; Klein CD; Salvesen GS; Drag M
    Biochimie; 2012 Mar; 94(3):704-10. PubMed ID: 22085501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes.
    Huguet F; Melet A; Alves de Sousa R; Lieutaud A; Chevalier J; Maigre L; Deschamps P; Tomas A; Leulliot N; Pages JM; Artaud I
    ChemMedChem; 2012 Jun; 7(6):1020-30. PubMed ID: 22489069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.