These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19198907)

  • 61. Expanding the product profile of a microbial alkane biosynthetic pathway.
    Harger M; Zheng L; Moon A; Ager C; An JH; Choe C; Lai YL; Mo B; Zong D; Smith MD; Egbert RG; Mills JH; Baker D; Pultz IS; Siegel JB
    ACS Synth Biol; 2013 Jan; 2(1):59-62. PubMed ID: 23656326
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction.
    Liu Q; Wu K; Cheng Y; Lu L; Xiao E; Zhang Y; Deng Z; Liu T
    Metab Eng; 2015 Mar; 28():82-90. PubMed ID: 25536488
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine.
    Qian ZG; Xia XX; Lee SY
    Biotechnol Bioeng; 2009 Nov; 104(4):651-62. PubMed ID: 19714672
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain.
    Kang SY; Choi O; Lee JK; Ahn JO; Ahn JS; Hwang BY; Hong YS
    Microb Cell Fact; 2015 Jun; 14():78. PubMed ID: 26055892
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.
    Zhao Y; Yang J; Qin B; Li Y; Sun Y; Su S; Xian M
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):1915-22. PubMed ID: 21468716
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals.
    Handke P; Lynch SA; Gill RT
    Metab Eng; 2011 Jan; 13(1):28-37. PubMed ID: 21056114
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Systems Metabolic Engineering of Escherichia coli.
    Choi KR; Shin JH; Cho JS; Yang D; Lee SY
    EcoSal Plus; 2017 Mar; 7(2):. PubMed ID: 28281437
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel MVA-mediated pathway for isoprene production in engineered E. coli.
    Yang J; Nie Q; Liu H; Xian M; Liu H
    BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.
    Kang A; George KW; Wang G; Baidoo E; Keasling JD; Lee TS
    Metab Eng; 2016 Mar; 34():25-35. PubMed ID: 26708516
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic
    Kurgan G; Panyon LA; Rodriguez-Sanchez Y; Pacheco E; Nieves LM; Mann R; Nielsen DR; Wang X
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635383
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.
    Zhu Z; Zhang YP
    Metab Eng; 2017 Jan; 39():110-116. PubMed ID: 27886975
    [TBL] [Abstract][Full Text] [Related]  

  • 74. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals.
    Jarboe LR
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):249-57. PubMed ID: 20924577
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].
    Liu W; Fu J; Zhang B; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1161-72. PubMed ID: 24364352
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genetic engineering of Escherichia coli for biofuel production.
    Liu T; Khosla C
    Annu Rev Genet; 2010; 44():53-69. PubMed ID: 20822440
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production of fuels and chemicals from renewable resources using engineered Escherichia coli.
    Zhao C; Zhang Y; Li Y
    Biotechnol Adv; 2019 Nov; 37(7):107402. PubMed ID: 31170447
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Engineering Escherichia coli for high-level production of propionate.
    Akawi L; Srirangan K; Liu X; Moo-Young M; Perry Chou C
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1057-72. PubMed ID: 25948049
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineering Escherichia coli coculture systems for the production of biochemical products.
    Zhang H; Pereira B; Li Z; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.