BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 19198954)

  • 1. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape.
    Locsei JT; Pedley TJ
    Bull Math Biol; 2009 Jul; 71(5):1089-116. PubMed ID: 19198954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of direction increases the drift velocity of run and tumble chemotaxis.
    Locsei JT
    J Math Biol; 2007 Jul; 55(1):41-60. PubMed ID: 17354016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling run-and-tumble chemotaxis in a shear flow.
    Bearon RN; Pedley TJ
    Bull Math Biol; 2000 Jul; 62(4):775-91. PubMed ID: 10938632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional persistence and the optimality of run-and-tumble chemotaxis.
    Nicolau DV; Armitage JP; Maini PK
    Comput Biol Chem; 2009 Aug; 33(4):269-74. PubMed ID: 19616478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.
    Thygesen UH
    Bull Math Biol; 2016 Mar; 78(3):556-79. PubMed ID: 27012850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Extremotaxis': computing with a bacterial-inspired algorithm.
    Nicolau DV; Burrage K; Nicolau DV; Maini PK
    Biosystems; 2008; 94(1-2):47-54. PubMed ID: 18611427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis.
    Saragosti J; Silberzan P; Buguin A
    PLoS One; 2012; 7(4):e35412. PubMed ID: 22530021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state chemotaxis in Escherichia coli.
    Kafri Y; da Silveira RA
    Phys Rev Lett; 2008 Jun; 100(23):238101. PubMed ID: 18643546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical results for chemotactic response and drift of E. coli in a weak attractant gradient.
    Reneaux M; Gopalakrishnan M
    J Theor Biol; 2010 Sep; 266(1):99-106. PubMed ID: 20558183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling and experimental validation of chemotaxis under controlled gradients of methyl-aspartate in Escherichia coli.
    Vuppula RR; Tirumkudulu MS; Venkatesh KV
    Mol Biosyst; 2010 Jun; 6(6):1082-92. PubMed ID: 20485750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients.
    Pohl O; Hintsche M; Alirezaeizanjani Z; Seyrich M; Beta C; Stark H
    PLoS Comput Biol; 2017 Jan; 13(1):e1005329. PubMed ID: 28114420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of diffusion in the presence of shear flow.
    Lutti A; Callaghan PT
    J Magn Reson; 2006 May; 180(1):83-92. PubMed ID: 16460975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of cell movement.
    Gruler H; Bültmann BD
    Blood Cells; 1984; 10(1):61-77. PubMed ID: 6487816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotaxis of Escherichia coli to L-serine.
    Vuppula RR; Tirumkudulu MS; Venkatesh KV
    Phys Biol; 2010 May; 7(2):026007. PubMed ID: 20505226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemotaxis in external fields: Simulations for active magnetic biological matter.
    Codutti A; Bente K; Faivre D; Klumpp S
    PLoS Comput Biol; 2019 Dec; 15(12):e1007548. PubMed ID: 31856155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signaling noise enhances chemotactic drift of E. coli.
    Flores M; Shimizu TS; ten Wolde PR; Tostevin F
    Phys Rev Lett; 2012 Oct; 109(14):148101. PubMed ID: 23083290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling microbial chemotaxis in a diffusion gradient chamber.
    Widman MT; Emerson D; Chiu CC; Worden RM
    Biotechnol Bioeng; 1997 Jul; 55(1):191-205. PubMed ID: 18636457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic model for eukaryotic gradient sensing: spontaneous and induced phosphoinositide polarization.
    Subramanian KK; Narang A
    J Theor Biol; 2004 Nov; 231(1):49-67. PubMed ID: 15363929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of strongly biased chemotaxis reveals the trade-offs of different bacterial migration strategies.
    Bearon RN; Durham WM
    Math Med Biol; 2020 Feb; 37(1):83-116. PubMed ID: 30950494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.