These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19199064)

  • 1. Optimal redesign of groundwater quality monitoring networks: a case study.
    Masoumi F; Kerachian R
    Environ Monit Assess; 2010 Feb; 161(1-4):247-57. PubMed ID: 19199064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the groundwater salinity monitoring network of the Tehran region: application of the discrete entropy theory.
    Masoumi F; Kerachian R
    Water Sci Technol; 2008; 58(4):765-71. PubMed ID: 18776610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.
    Owlia RR; Abrishamchi A; Tajrishy M
    Environ Monit Assess; 2011 Jan; 172(1-4):263-73. PubMed ID: 20180017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal redesign of coastal groundwater quality monitoring networks under uncertainty: application of the theory of belief functions.
    Hosseini M; Kerachian R
    Environ Sci Pollut Res Int; 2023 May; 30(21):59701-59718. PubMed ID: 37012570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience.
    Mahjouri N; Kerachian R
    Environ Monit Assess; 2011 Apr; 175(1-4):291-302. PubMed ID: 20499162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.
    Júnez-Ferreira HE; Herrera GS; González-Hita L; Cardona A; Mora-Rodríguez J
    Environ Monit Assess; 2016 Jan; 188(1):39. PubMed ID: 26681183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fuzzy multi-objective optimization approach for treated wastewater allocation.
    Tayebikhorami S; Nikoo MR; Sadegh M
    Environ Monit Assess; 2019 Jun; 191(7):468. PubMed ID: 31243555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer.
    Zhang K; Li H; Achari G
    J Contam Hydrol; 2009 Apr; 106(1-2):73-82. PubMed ID: 19217686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A geostatistical methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer.
    Júnez-Ferreira HE; Herrera GS
    Environ Monit Assess; 2013 Apr; 185(4):3527-49. PubMed ID: 22936025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources.
    Lal A; Datta B
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31717383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory.
    Nazeri Tahroudi M; Khashei Siuki A; Ramezani Y
    Environ Monit Assess; 2019 Mar; 191(4):250. PubMed ID: 30919110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.
    Bashi-Azghadi SN; Kerachian R
    Sci Total Environ; 2010 Apr; 408(10):2189-98. PubMed ID: 20189633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.
    Chadalavada S; Datta B; Naidu R
    Environ Monit Assess; 2011 Feb; 173(1-4):929-40. PubMed ID: 20390346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semivariance analysis and transinformation entropy for optimal redesigning of nutrients monitoring network in San Francisco bay.
    Boroumand A; Rajaee T; Masoumi F
    Mar Pollut Bull; 2018 Apr; 129(2):689-694. PubMed ID: 29096974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fuzzy multi-stakeholder multi-criteria methodology for water allocation and reuse in metropolitan areas.
    Pourmand E; Mahjouri N
    Environ Monit Assess; 2018 Jun; 190(7):444. PubMed ID: 29961116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy.
    Torkashvand M; Neshat A; Javadi S; Yousefi H
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46704-46724. PubMed ID: 33201500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Dempster-Shafer theory and fuzzy analytic hierarchy process for evaluating the effects of geological formation units on groundwater quality.
    Mokarram M; Hojati M; Saber A
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19352-19364. PubMed ID: 31073838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of on-line river water quality monitoring systems using the entropy theory: a case study.
    Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C
    Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally efficient approach for identification of fuzzy dynamic groundwater sampling network.
    Kumari K; Jain S; Dhar A
    Environ Monit Assess; 2019 Apr; 191(5):310. PubMed ID: 31030264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.