These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19199098)

  • 1. Abnormal functional connectivity between ipsilesional V5/MT+ and contralesional striate cortex (V1) in blindsight.
    Silvanto J; Walsh V; Cowey A
    Exp Brain Res; 2009 Mar; 193(4):645-50. PubMed ID: 19199098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making the blindsighted see.
    Silvanto J; Cowey A; Lavie N; Walsh V
    Neuropsychologia; 2007 Nov; 45(14):3346-50. PubMed ID: 17669445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex.
    Ajina S; Kennard C; Rees G; Bridge H
    Brain; 2015 Jan; 138(Pt 1):164-78. PubMed ID: 25433915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex.
    Silvanto J; Lavie N; Walsh V
    J Neurophysiol; 2006 Aug; 96(2):941-5. PubMed ID: 16624999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial magnetic stimulation of visual area V5 in migraine.
    Battelli L; Black KR; Wray SH
    Neurology; 2002 Apr; 58(7):1066-9. PubMed ID: 11940694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effect of visual motion adaption upon visual cortical excitability.
    Lubeck AJ; Van Ombergen A; Ahmad H; Bos JE; Wuyts FL; Bronstein AM; Arshad Q
    J Neurophysiol; 2017 Mar; 117(3):903-909. PubMed ID: 27903640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in connectivity after visual cortical brain damage underlie altered visual function.
    Bridge H; Thomas O; Jbabdi S; Cowey A
    Brain; 2008 Jun; 131(Pt 6):1433-44. PubMed ID: 18469021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion specific responses from a blind hemifield.
    ffytche DH; Guy CN; Zeki S
    Brain; 1996 Dec; 119 ( Pt 6)():1971-82. PubMed ID: 9010001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enhanced role for right hV5/MT+ in the analysis of motion in the contra- and ipsi-lateral visual hemi-fields.
    Strong SL; Silson EH; Gouws AD; Morland AB; McKeefry DJ
    Behav Brain Res; 2019 Oct; 372():112060. PubMed ID: 31251957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+.
    Silvanto J; Muggleton NG
    Neuroimage; 2008 May; 40(4):1841-8. PubMed ID: 18353682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception.
    Laycock R; Crewther DP; Fitzgerald PB; Crewther SG
    J Neurophysiol; 2007 Sep; 98(3):1253-62. PubMed ID: 17634339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of visual motion processing without awareness in patients with striate cortex and pulvinar lesions.
    Barleben M; Stoppel CM; Kaufmann J; Merkel C; Wecke T; Goertler M; Heinze HJ; Hopf JM; Schoenfeld MA
    Hum Brain Mapp; 2015 Apr; 36(4):1585-94. PubMed ID: 25529748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual activation of extra-striate cortex in the absence of V1 activation.
    Bridge H; Hicks SL; Xie J; Okell TW; Mannan S; Alexander I; Cowey A; Kennard C
    Neuropsychologia; 2010 Dec; 48(14):4148-54. PubMed ID: 20974160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal contrast responses in the extrastriate cortex of blindsight patients.
    Ajina S; Rees G; Kennard C; Bridge H
    J Neurosci; 2015 May; 35(21):8201-13. PubMed ID: 26019336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1.
    Ajina S; Bridge H
    Neuropsychologia; 2019 May; 128():140-149. PubMed ID: 29320715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli.
    Hurme M; Koivisto M; Henriksson L; Railo H
    Neuropsychologia; 2020 Jan; 136():107266. PubMed ID: 31758972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of area hV5/MT+ in subjects with homonymous visual field defects.
    Papanikolaou A; Keliris GA; Papageorgiou TD; Schiefer U; Logothetis NK; Smirnakis SM
    Neuroimage; 2019 Apr; 190():254-268. PubMed ID: 29627591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of first- and second-order coherent motion in blindsight.
    Pavan A; Alexander I; Campana G; Cowey A
    Exp Brain Res; 2011 Oct; 214(2):261-71. PubMed ID: 21842409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation.
    Marzi CA; Mancini F; Savazzi S
    Exp Brain Res; 2009 Jan; 192(3):431-41. PubMed ID: 18663438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation.
    Schaeffner LF; Welchman AE
    Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.