These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. Zhang L; Balzano L; Resasco DE J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808 [TBL] [Abstract][Full Text] [Related]
7. Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites. Doong RA; Chiang LF Water Sci Technol; 2008; 58(10):1985-92. PubMed ID: 19039179 [TBL] [Abstract][Full Text] [Related]
8. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites. Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209 [TBL] [Abstract][Full Text] [Related]
9. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization. Zhang S; Lin W; Wong CP; Bucknall DG; Kumar S ACS Appl Mater Interfaces; 2010 Jun; 2(6):1642-7. PubMed ID: 20507070 [TBL] [Abstract][Full Text] [Related]
13. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962 [TBL] [Abstract][Full Text] [Related]
14. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
15. In situ synthesis and characterization of multi-walled carbon nanotube/Prussian blue nanocomposite materials and application. Qiu JD; Xiong M; Liang RP; Zhang J; Xia XH J Nanosci Nanotechnol; 2008 Sep; 8(9):4453-60. PubMed ID: 19049040 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS Small; 2005 May; 1(5):560-5. PubMed ID: 17193486 [TBL] [Abstract][Full Text] [Related]
17. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. Yang Y; Guptal MC; Dudley KL; Lawrence RW J Nanosci Nanotechnol; 2007 Feb; 7(2):549-54. PubMed ID: 17450793 [TBL] [Abstract][Full Text] [Related]
18. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Shi X; Hudson JL; Spicer PP; Tour JM; Krishnamoorti R; Mikos AG Biomacromolecules; 2006 Jul; 7(7):2237-42. PubMed ID: 16827593 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites. Tan W; Twomey J; Guo D; Madhavan K; Li M IEEE Trans Nanobioscience; 2010 Jun; 9(2):111-20. PubMed ID: 20215088 [TBL] [Abstract][Full Text] [Related]
20. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]