These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1119 related articles for article (PubMed ID: 19199412)

  • 1. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What is "odd" in Posner's location-cueing paradigm? Neural responses to unexpected location and feature changes compared.
    Vossel S; Weidner R; Thiel CM; Fink GR
    J Cogn Neurosci; 2009 Jan; 21(1):30-41. PubMed ID: 18476756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention mechanisms in visual search -- an fMRI study.
    Leonards U; Sunaert S; Van Hecke P; Orban GA
    J Cogn Neurosci; 2000; 12 Suppl 2():61-75. PubMed ID: 11506648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting.
    Muller HJ; Reimann B; Krummenacher J
    J Exp Psychol Hum Percept Perform; 2003 Oct; 29(5):1021-35. PubMed ID: 14585020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greater frontal-parietal synchrony at low gamma-band frequencies for inefficient than efficient visual search in human EEG.
    Phillips S; Takeda Y
    Int J Psychophysiol; 2009 Sep; 73(3):350-4. PubMed ID: 19481120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study.
    Downar J; Crawley AP; Mikulis DJ; Davis KD
    Neuroimage; 2001 Dec; 14(6):1256-67. PubMed ID: 11707082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention.
    Salmi J; Rinne T; Koistinen S; Salonen O; Alho K
    Brain Res; 2009 Aug; 1286():155-64. PubMed ID: 19577551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-world visual search is dominated by top-down guidance.
    Chen X; Zelinsky GJ
    Vision Res; 2006 Nov; 46(24):4118-33. PubMed ID: 17005231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functional anatomy of inspection time: an event-related fMRI study.
    Deary IJ; Simonotto E; Meyer M; Marshall A; Marshall I; Goddard N; Wardlaw JM
    Neuroimage; 2004 Aug; 22(4):1466-79. PubMed ID: 15275904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural mechanisms of top-down attentional control.
    Hopfinger JB; Buonocore MH; Mangun GR
    Nat Neurosci; 2000 Mar; 3(3):284-91. PubMed ID: 10700262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salience representation in the parietal and frontal cortex.
    Zenon A; Filali N; Duhamel JR; Olivier E
    J Cogn Neurosci; 2010 May; 22(5):918-30. PubMed ID: 19366288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.