These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19199425)

  • 41. Functionally distinct contributions of parietal cortex to a numerical landmark task: An fMRI study.
    Sahan MI; Majerus S; Andres M; Fias W
    Cortex; 2019 May; 114():28-40. PubMed ID: 30527713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How Do Visual and Parietal Cortex Contribute to Visual Short-Term Memory?
    Ester EF; Rademaker RL; Sprague TC
    eNeuro; 2016; 3(2):. PubMed ID: 27294194
    [No Abstract]   [Full Text] [Related]  

  • 43. The role of the superior intraparietal sulcus in supporting visual short-term memory for multifeature objects.
    Xu Y
    J Neurosci; 2007 Oct; 27(43):11676-86. PubMed ID: 17959810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory.
    Li S; Cai Y; Liu J; Li D; Feng Z; Chen C; Xue G
    Neuroimage; 2017 Apr; 149():210-219. PubMed ID: 28131893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissociation between Attention-Dependent and Spatially Specific Illusory Shape Responses within the Topographic Areas of the Posterior Parietal Cortex.
    Arsenovic A; Ischebeck A; Zaretskaya N
    J Neurosci; 2022 Oct; 42(43):8125-8135. PubMed ID: 36150890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prioritized maps of space in human frontoparietal cortex.
    Jerde TA; Merriam EP; Riggall AC; Hedges JH; Curtis CE
    J Neurosci; 2012 Nov; 32(48):17382-90. PubMed ID: 23197729
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking.
    Alnæs D; Sneve MH; Richard G; Skåtun KC; Kaufmann T; Nordvik JE; Andreassen OA; Endestad T; Laeng B; Westlye LT
    Neuroimage; 2015 Dec; 123():129-37. PubMed ID: 26299796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a superior frontal-intraparietal network for visuo-spatial working memory.
    Klingberg T
    Neuropsychologia; 2006; 44(11):2171-7. PubMed ID: 16405923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anatomic dissociation of selective and suppressive processes in visual attention.
    Belmonte MK; Yurgelun-Todd DA
    Neuroimage; 2003 May; 19(1):180-9. PubMed ID: 12781737
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporal-Order-Based Attentional Priority Modulates Mnemonic Representations in Parietal and Frontal Cortices.
    Yu Q; Shim WM
    Cereb Cortex; 2019 Jul; 29(7):3182-3192. PubMed ID: 30124789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. "What" and "where" in the intraparietal sulcus: an FMRI study of object identity and location in visual short-term memory.
    Harrison A; Jolicoeur P; Marois R
    Cereb Cortex; 2010 Oct; 20(10):2478-85. PubMed ID: 20100899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex.
    Ackerman CM; Courtney SM
    J Neurophysiol; 2012 Nov; 108(9):2419-29. PubMed ID: 22896722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hemodynamic correlate of lateralized visual short-term memories.
    Cutini S; Scarpa F; Scatturin P; Jolicœur P; Pluchino P; Zorzi M; Dell'Acqua R
    Neuropsychologia; 2011 May; 49(6):1611-21. PubMed ID: 21163274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The transverse occipital sulcus and intraparietal sulcus show neural selectivity to object-scene size relationships.
    Welbourne LE; Jonnalagadda A; Giesbrecht B; Eckstein MP
    Commun Biol; 2021 Jun; 4(1):768. PubMed ID: 34158579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of visual and auditory motion processing in human cerebral cortex.
    Lewis JW; Beauchamp MS; DeYoe EA
    Cereb Cortex; 2000 Sep; 10(9):873-88. PubMed ID: 10982748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural systems for visual orienting and their relationships to spatial working memory.
    Corbetta M; Kincade JM; Shulman GL
    J Cogn Neurosci; 2002 Apr; 14(3):508-23. PubMed ID: 11970810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frontoparietal mechanisms supporting attention to location and intensity of painful stimuli.
    Lobanov OV; Quevedo AS; Hadsel MS; Kraft RA; Coghill RC
    Pain; 2013 Sep; 154(9):1758-1768. PubMed ID: 23711484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intraparietal sulcus activity and functional connectivity supporting spatial working memory manipulation.
    Bray S; Almas R; Arnold AE; Iaria G; MacQueen G
    Cereb Cortex; 2015 May; 25(5):1252-64. PubMed ID: 24275831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separate neural pathways for the visual analysis of object shape in perception and prehension.
    Goodale MA; Meenan JP; Bülthoff HH; Nicolle DA; Murphy KJ; Racicot CI
    Curr Biol; 1994 Jul; 4(7):604-10. PubMed ID: 7953534
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Task modulation of the 2-pathway characterization of occipitotemporal and posterior parietal visual object representations.
    Xu Y; Vaziri-Pashkam M
    Neuropsychologia; 2019 Sep; 132():107140. PubMed ID: 31301350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.