These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19199565)

  • 1. Measuring the length distribution of self-assembled lipid nanotubes by orientation control with a high-frequency alternating current electric field in aqueous solutions.
    Hirano K; Aoyagi M; Ishido T; Ooie T; Frusawa H; Asakawa M; Shimizu T; Ishikawa M
    Anal Chem; 2009 Feb; 81(4):1459-64. PubMed ID: 19199565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering lipid tubules using nano-sized building blocks: the combinatorial self-assembly of vesicles.
    Tan YC; Shen AQ; Li Y; Elson E; Ma L
    Lab Chip; 2008 Feb; 8(2):339-45. PubMed ID: 18231675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid nanotube formation using space-regulated electric field above interdigitated electrodes.
    Bi H; Fu D; Wang L; Han X
    ACS Nano; 2014 Apr; 8(4):3961-9. PubMed ID: 24669822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclodextrin-based self-assembled nanotubes at the water/air interface.
    Hernández-Pascacio J; Garza C; Banquy X; Díaz-Vergara N; Amigo A; Ramos S; Castillo R; Costas M; Piñeiro A
    J Phys Chem B; 2007 Nov; 111(44):12625-30. PubMed ID: 17941668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric moulding of dispersed lipid nanotubes into a nanofluidic device.
    Frusawa H; Manabe T; Kagiyama E; Hirano K; Kameta N; Masuda M; Shimizu T
    Sci Rep; 2013; 3():2165. PubMed ID: 23835525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solutions.
    Alberto D; Busso L; Crotti G; Gandini M; Garfagnini R; Giudici P; Gnesi I; Manta F; Piragino G
    Electromagn Biol Med; 2008; 27(1):25-39. PubMed ID: 18327712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local environment and property of water inside the hollow cylinder of a lipid nanotube.
    Yui H; Guo Y; Koyama K; Sawada T; John G; Yang B; Masuda M; Shimizu T
    Langmuir; 2005 Jan; 21(2):721-7. PubMed ID: 15641846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable interconnection of single-walled carbon nanotubes under ac electric field.
    Chen Z; Yang Y; Chen F; Qing Q; Wu Z; Liu Z
    J Phys Chem B; 2005 Jun; 109(23):11420-3. PubMed ID: 16852396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication, modification and application of lipid nanotubes.
    Bi H; Chen Z; Guo L; Zhang Y; Zeng X; Xu L
    Chem Phys Lipids; 2022 Oct; 248():105242. PubMed ID: 36162593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of collagen nanotubes with highly regular dimensions through membrane-templated layer-by-layer assembly.
    Landoulsi J; Roy CJ; Dupont-Gillain C; Demoustier-Champagne S
    Biomacromolecules; 2009 May; 10(5):1021-4. PubMed ID: 19371025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free detection of cell-contractile activity with lipid nanotubes.
    Sugihara K; Delai M; Mahnna R; Kusch J; Poulikakos D; Vörös J; Zambelli T; Ferrari A
    Integr Biol (Camb); 2013 Feb; 5(2):423-30. PubMed ID: 23212045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of boron nitride nanotubes aqueous dispersions for biological applications.
    Ciofani G; Raffa V; Menciassi A; Dario P
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6223-31. PubMed ID: 19205187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin nanotubes as vehicles for gene delivery into human cells.
    Ten E; Ling C; Wang Y; Srivastava A; Dempere LA; Vermerris W
    Biomacromolecules; 2014 Jan; 15(1):327-38. PubMed ID: 24308459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid nanotubes: Formation and applications.
    Wang Y; Zhang J; Gao H; Sun Y; Wang L
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112362. PubMed ID: 35101821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Well-defined organic nanotubes from multicomponent bottlebrush copolymers.
    Huang K; Rzayev J
    J Am Chem Soc; 2009 May; 131(19):6880-5. PubMed ID: 19397329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field gradients can control the alignment of nanorods.
    Ooi C; Yellen BB
    Langmuir; 2008 Aug; 24(16):8514-21. PubMed ID: 18630934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic transport of latex particles in lipid nanotubes.
    Tokarz M; Hakonen B; Dommersnes P; Orwar O; Akerman B
    Langmuir; 2007 Jul; 23(14):7652-8. PubMed ID: 17547424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freely drawn single lipid nanotube patterns.
    Sugihara K; Rustom A; Spatz JP
    Soft Matter; 2015 Mar; 11(10):2029-35. PubMed ID: 25626419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extremely low-frequency magnetic fields on L-glutamic acid aqueous solutions at 20, 40, and 60 microT static magnetic fields.
    Alberto D; Busso L; Garfagnini R; Giudici P; Gnesi I; Manta F; Piragino G; Callegaro L; Crotti G
    Electromagn Biol Med; 2008; 27(3):241-53. PubMed ID: 18821200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous nematic alignment of a lipid nanotube in aqueous solutions.
    Ding W; Minamikawa H; Kameta N; Wada M; Masuda M; Shimizu T
    Langmuir; 2015 Jan; 31(3):1150-4. PubMed ID: 25548876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.