These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19199570)

  • 1. Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins.
    Ricci F; Bonham AJ; Mason AC; Reich NO; Plaxco KW
    Anal Chem; 2009 Feb; 81(4):1608-14. PubMed ID: 19199570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free detection of DNA-binding proteins based on microfluidic solid-state molecular beacon sensor.
    Wang J; Onoshima D; Aki M; Okamoto Y; Kaji N; Tokeshi M; Baba Y
    Anal Chem; 2011 May; 83(9):3528-32. PubMed ID: 21476599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor.
    Kerman K; Morita Y; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2005 Mar; 381(6):1114-21. PubMed ID: 15770476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor beacons for the quantitative detection of DNA binding activity.
    Vallée-Bélisle A; Bonham AJ; Reich NO; Ricci F; Plaxco KW
    J Am Chem Soc; 2011 Sep; 133(35):13836-9. PubMed ID: 21815647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA.
    Patterson A; Caprio F; Vallée-Bélisle A; Moscone D; Plaxco KW; Palleschi G; Ricci F
    Anal Chem; 2010 Nov; 82(21):9109-15. PubMed ID: 20936782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of protein-DNA interaction with a DNA probe: distinction between single-strand and double-strand DNA-protein interaction.
    Ban C; Chung S; Park DS; Shim YB
    Nucleic Acids Res; 2004 Jul; 32(13):e110. PubMed ID: 15273279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring cooperative binding using electrochemical DNA-based sensors.
    Macazo FC; Karpel RL; White RJ
    Langmuir; 2015 Jan; 31(2):868-75. PubMed ID: 25517392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrochemical sensing platform based on local repression of electrolyte diffusion for single-step, reagentless, sensitive detection of a sequence-specific DNA-binding protein.
    Zhang Y; Liu F; Nie J; Jiang F; Zhou C; Yang J; Fan J; Li J
    Analyst; 2014 May; 139(9):2193-8. PubMed ID: 24647581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers.
    Biagiotti V; Porchetta A; Desiderati S; Plaxco KW; Palleschi G; Ricci F
    Anal Bioanal Chem; 2012 Jan; 402(1):413-21. PubMed ID: 21928081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical biosensors employing an internal electrode attachment site and achieving reversible, high gain detection of specific nucleic acid sequences.
    Rowe AA; Chuh KN; Lubin AA; Miller EA; Cook B; Hollis D; Plaxco KW
    Anal Chem; 2011 Dec; 83(24):9462-6. PubMed ID: 21975121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical sensor for the detection of protein-small molecule interactions directly in serum and other complex matrices.
    Cash KJ; Ricci F; Plaxco KW
    J Am Chem Soc; 2009 May; 131(20):6955-7. PubMed ID: 19413316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent SSB as a reagentless biosensor for single-stranded DNA.
    Hedgethorne K; Webb MR
    Methods Mol Biol; 2012; 922():219-33. PubMed ID: 22976190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSB binding to single-stranded DNA probed using solid-state nanopore sensors.
    Japrung D; Bahrami A; Nadzeyka A; Peto L; Bauerdick S; Edel JB; Albrecht T
    J Phys Chem B; 2014 Oct; 118(40):11605-12. PubMed ID: 25222770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity.
    Dillingham MS; Tibbles KL; Hunter JL; Bell JC; Kowalczykowski SC; Webb MR
    Biophys J; 2008 Oct; 95(7):3330-9. PubMed ID: 18599625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.