BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19199691)

  • 1. Perturbations of water by alkali halide ions measured using multivariate Raman curve resolution.
    Perera PN; Browder B; Ben-Amotz D
    J Phys Chem B; 2009 Feb; 113(7):1805-9. PubMed ID: 19199691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of dissolved halide anions on hydrogen bonding in liquid water.
    Smith JD; Saykally RJ; Geissler PL
    J Am Chem Soc; 2007 Nov; 129(45):13847-56. PubMed ID: 17958418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.
    Ahmed M; Singh AK; Mondal JA; Sarkar SK
    J Phys Chem B; 2013 Aug; 117(33):9728-33. PubMed ID: 23895453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA
    J Chem Phys; 2014 Oct; 141(16):164708. PubMed ID: 25362333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How ions affect the structure of water: a combined Raman spectroscopy and multivariate curve resolution study.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA; Sarkar SK
    J Phys Chem B; 2013 Dec; 117(51):16479-85. PubMed ID: 24298945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au).
    Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ
    J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solute-induced perturbations of solvent-shell molecules observed using multivariate Raman curve resolution.
    Perera P; Wyche M; Loethen Y; Ben-Amotz D
    J Am Chem Soc; 2008 Apr; 130(14):4576-7. PubMed ID: 18336023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman and infrared spectroscopic investigations on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate-water clusters.
    Rudolph WW; Irmer G
    Appl Spectrosc; 2007 Dec; 61(12):1312-27. PubMed ID: 18198023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion solvation and water structure in potassium halide aqueous solutions.
    Soper AK; Weckström K
    Biophys Chem; 2006 Dec; 124(3):180-91. PubMed ID: 16698172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4-, Cl-, Br-, and NO3-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Mar; 42(11):3919-35. PubMed ID: 23334569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical modeling of magnesium ion imprints in the Raman scattering of water.
    Kapitán J; Dracínský M; Kaminský J; Benda L; Bour P
    J Phys Chem B; 2010 Mar; 114(10):3574-82. PubMed ID: 20175531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hofmeister anionic effects on hydration electric fields around water and peptide.
    Kim H; Lee H; Lee G; Kim H; Cho M
    J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of water dangling OH bonds in hydrophobic hydration shells. Comparison of simulation and experiment.
    Tomlinson-Phillips J; Davis J; Ben-Amotz D; Spångberg D; Pejov L; Hermansson K
    J Phys Chem A; 2011 Jun; 115(23):6177-83. PubMed ID: 21413757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of DNA hydration shells studied by Raman spectroscopy.
    Tao NJ; Lindsay SM; Rupprecht A
    Biopolymers; 1989 May; 28(5):1019-30. PubMed ID: 2742983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency modes of aqueous alkali halide solutions: an ultrafast optical Kerr effect study.
    Heisler IA; Mazur K; Meech SR
    J Phys Chem B; 2011 Mar; 115(8):1863-73. PubMed ID: 21291185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between halide anions and a molecular hydrophobic interface.
    Rankin BM; Hands MD; Wilcox DS; Fega KR; Slipchenko LV; Ben-Amotz D
    Faraday Discuss; 2013; 160():255-70; discussion 311-27. PubMed ID: 23795504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ions and hydrogen bonding in a hydrophobic environment: CCl(4).
    Bisson P; Xiao H; Kuo M; Kamelamela N; Shultz MJ
    J Phys Chem A; 2010 Apr; 114(12):4051-7. PubMed ID: 20199092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy.
    Ahmed M; Singh AK; Mondal JA
    Phys Chem Chem Phys; 2016 Jan; 18(4):2767-75. PubMed ID: 26725484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain calculations of the infrared and polarized Raman spectra of tetraalanine in aqueous solution.
    Torii H
    J Phys Chem B; 2007 May; 111(19):5434-44. PubMed ID: 17441760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman resonance effect in liquid water.
    Pastorczak M; Kozanecki M; Ulanski J
    J Phys Chem A; 2008 Oct; 112(43):10705-7. PubMed ID: 18834100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.