BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19199855)

  • 1. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New wearable system for the step counting based on the codivilla-spring for daily activity monitoring in stroke rehabilitation.
    Giansanti D; Tiberi Y; Maccioni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4720-3. PubMed ID: 19163770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the design of a wearable system for fall-risk detection in telerehabilitation.
    Giansanti D; Morelli S; Maccioni G; Costantini G
    Telemed J E Health; 2009 Apr; 15(3):296-9. PubMed ID: 19382869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New wearable system for step-counting telemonitoring and telerehabilitation based on the Codivilla spring.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2008 Dec; 14(10):1096-100. PubMed ID: 19119833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable kit for the assessment of gait parameters in daily telerehabilitation.
    Giansanti D; Morelli S; Maccioni G; Grigioni M
    Telemed J E Health; 2013 Mar; 19(3):224-32. PubMed ID: 23438362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, construction and validation of a portable care system for the daily telerehabiliatation of gait.
    Giansanti D; Morelli S; Maccioni G; Brocco M
    Comput Methods Programs Biomed; 2013 Oct; 112(1):146-55. PubMed ID: 23891239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telemonitoring and telerehabilitation of patients with Parkinson's disease: health technology assessment of a novel wearable step counter.
    Giansanti D; Macellari V; Maccioni G
    Telemed J E Health; 2008; 14(1):76-83. PubMed ID: 18328028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-centered integrated motor imagery delivered in the home with telerehabilitation to improve walking after stroke.
    Deutsch JE; Maidan I; Dickstein R
    Phys Ther; 2012 Aug; 92(8):1065-77. PubMed ID: 22499891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.
    Held JP; Ferrer B; Mainetti R; Steblin A; Hertler B; Moreno-Conde A; Dueñas A; Pajaro M; Parra-Calderón CL; Vargiu E; Josè Zarco M; Barrera M; Echevarria C; Jódar-Sánchez F; Luft AR; Borghese NA
    Eur J Phys Rehabil Med; 2018 Aug; 54(4):545-553. PubMed ID: 28949120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a portable gait rehabilitation system for home-visit rehabilitation.
    Yano H; Tanaka N; Kamibayashi K; Saitou H; Iwata H
    ScientificWorldJournal; 2015; 2015():849831. PubMed ID: 25945364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis.
    Dunsky A; Dickstein R; Marcovitz E; Levy S; Deutsch JE
    Arch Phys Med Rehabil; 2008 Aug; 89(8):1580-8. PubMed ID: 18674992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and construction of step counters for disable people: preliminary experience at the Italian Institute of Health.
    Maccioni G; Macellari V; Giansanti D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4927-9. PubMed ID: 18003111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of body-worn movement monitor technology for balance and gait rehabilitation.
    Horak F; King L; Mancini M
    Phys Ther; 2015 Mar; 95(3):461-70. PubMed ID: 25504484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding.
    Deutsch JE; Lewis JA; Burdea G
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):30-5. PubMed ID: 17436873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial kinesthetic systems for telerehabilitation.
    De Rossi D; Lorussi F; Scilingo EP; Carpi F; Tognetti A; Tesconi M
    Stud Health Technol Inform; 2004; 108():209-13. PubMed ID: 15718648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-time auditory feedback system for retraining gait.
    Maulucci RA; Eckhouse RH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5199-202. PubMed ID: 22255509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position-sensing technologies for movement analysis in stroke rehabilitation.
    Zheng H; Black ND; Harris ND
    Med Biol Eng Comput; 2005 Jul; 43(4):413-20. PubMed ID: 16255421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Objective fall risk detection in stroke survivors using wearable sensor technology: a feasibility study.
    Taylor-Piliae RE; Mohler MJ; Najafi B; Coull BM
    Top Stroke Rehabil; 2016 Dec; 23(6):393-399. PubMed ID: 26382725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprosthesis for footdrop compared with an ankle-foot orthosis: effects on postural control during walking.
    Ring H; Treger I; Gruendlinger L; Hausdorff JM
    J Stroke Cerebrovasc Dis; 2009 Jan; 18(1):41-7. PubMed ID: 19110144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program.
    Cherry CO; Chumbler NR; Richards K; Huff A; Wu D; Tilghman LM; Butler A
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):21-27. PubMed ID: 26135221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.