These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19199861)

  • 1. Marine macrolides, a promising source of antitumor compounds.
    Napolitano JG; Daranas AH; Norte M; Fernández JJ
    Anticancer Agents Med Chem; 2009 Feb; 9(2):122-37. PubMed ID: 19199861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The medicinal potential of promising marine macrolides with anticancer activity.
    Qi Y; Ma S
    ChemMedChem; 2011 Mar; 6(3):399-409. PubMed ID: 21302362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of the cytotoxic macrolides amphidinolide X and J.
    Trigili C; Pera B; Barbazanges M; Cossy J; Meyer C; Pineda O; Rodríguez-Escrich C; Urpí F; Vilarrasa J; Díaz JF; Barasoain I
    Chembiochem; 2011 May; 12(7):1027-30. PubMed ID: 21500335
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis and biological evaluation of (+)-neopeltolide analogues: importance of the oxazole-containing side chain.
    Fuwa H; Noguchi T; Kawakami M; Sasaki M
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2415-9. PubMed ID: 24792465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic potential of marine macrolides: An overview from 1990 to 2022.
    Das R; Rauf A; Mitra S; Emran TB; Hossain MJ; Khan Z; Naz S; Ahmad B; Meyyazhagan A; Pushparaj K; Wan CC; Balasubramanian B; Rengasamy KR; Simal-Gandara J
    Chem Biol Interact; 2022 Sep; 365():110072. PubMed ID: 35952775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin-binding marine macrolides: total synthesis and biological importance.
    Yeung KS; Paterson I
    Angew Chem Int Ed Engl; 2002 Dec; 41(24):4632-53. PubMed ID: 12481316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and Development of Macrolides as Anticancer Agents.
    Liu R; Hou Y; Gu Y
    Curr Top Med Chem; 2021; 21(18):1657-1673. PubMed ID: 34315371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and biological properties of the cytotoxic 14-membered macrolides aspergillide A and B.
    Díaz-Oltra S; Angulo-Pachón CA; Murga J; Falomir E; Carda M; Marco JA
    Chemistry; 2011 Jan; 17(2):675-88. PubMed ID: 21207589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and biological evaluation of neopeltolide and analogs.
    Cui Y; Balachandran R; Day BW; Floreancig PE
    J Org Chem; 2012 Mar; 77(5):2225-35. PubMed ID: 22329423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus.
    Kito K; Ookura R; Yoshida S; Namikoshi M; Ooi T; Kusumi T
    Org Lett; 2008 Jan; 10(2):225-8. PubMed ID: 18078344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular editing and biological evaluation of amphidinolide X and Y.
    Fürstner A; Kattnig E; Kelter G; Fiebig HH
    Chemistry; 2009; 15(16):4030-43. PubMed ID: 19241435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Synthesis and Biological Evaluation of Highly Potent Simplified Archazolids.
    Rivière S; Vielmuth C; Ennenbach C; Abdelrahman A; Lemke C; Gütschow M; Müller CE; Menche D
    ChemMedChem; 2020 Jul; 15(14):1348-1363. PubMed ID: 32363789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New macrolides from the sponge Chondrosia corticata.
    Shin J; Lee HS; Kim JY; Shin HJ; Ahn JW; Paul VJ
    J Nat Prod; 2004 Nov; 67(11):1889-92. PubMed ID: 15568783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and biological evaluation of 10,11-dihydrodictyostatin, a potent analogue of the marine anticancer agent dictyostatin.
    Paterson I; Gardner NM; Poullennec KG; Wright AE
    J Nat Prod; 2008 Mar; 71(3):364-9. PubMed ID: 18081257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp.
    Mohamed IE; Gross H; Pontius A; Kehraus S; Krick A; Kelter G; Maier A; Fiebig HH; König GM
    Org Lett; 2009 Nov; 11(21):5014-7. PubMed ID: 19813715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Access to the Mandelalide Family of Macrolides: Development of an Anion Relay Chemistry Strategy.
    Nguyen MH; Imanishi M; Kurogi T; Wan X; Ishmael JE; McPhail KL; Smith AB
    J Org Chem; 2018 Apr; 83(8):4287-4306. PubMed ID: 29480727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of carbamate derivatives of iejimalides. Retention of normal antiproliferative activity and localization of binding in cancer cells.
    Schweitzer D; Zhu J; Jarori G; Tanaka J; Higa T; Davisson VJ; Helquist P
    Bioorg Med Chem; 2007 May; 15(9):3208-16. PubMed ID: 17337191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine-Derived Macrolides 1990-2020: An Overview of Chemical and Biological Diversity.
    Zhang H; Zou J; Yan X; Chen J; Cao X; Wu J; Liu Y; Wang T
    Mar Drugs; 2021 Mar; 19(4):. PubMed ID: 33806230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total synthesis and biological evaluation of (-)-exiguolide analogues: importance of the macrocyclic backbone.
    Fuwa H; Mizunuma K; Sasaki M; Suzuki T; Kubo H
    Org Biomol Chem; 2013 Jun; 11(21):3442-50. PubMed ID: 23538720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A critical role played by the conjugated trienyl lactone moiety.
    Qian S; Shah AK; Head SA; Liu JO; Jin Z
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3411-3. PubMed ID: 27374243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.