BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19200113)

  • 1. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.
    Carpenter CE; Broadbent JR
    J Food Sci; 2009; 74(1):R12-5. PubMed ID: 19200113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua.
    Miller FA; Ramos B; Gil MM; Brandão TR; Teixeira P; Silva CL
    Int J Food Microbiol; 2009 Jul; 133(1-2):121-8. PubMed ID: 19481827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.
    Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Habituation to organic acid anions induces resistance to acid and bile in Listeria monocytogenes.
    Zhang Y; Carpenter CE; Broadbent JR; Luo X
    Meat Sci; 2014 Mar; 96(3):1152-7. PubMed ID: 24334034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
    Valero A; Hervás C; García-Gimeno RM; Zurera G
    Food Microbiol; 2007 Aug; 24(5):452-64. PubMed ID: 17367678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the behaviour of Listeria monocytogenes in ground pork as a function of pH, water activity, nature and concentration of organic acid salts.
    Zuliani V; Lebert I; Augustin JC; Garry P; Vendeuvre JL; Lebert A
    J Appl Microbiol; 2007 Sep; 103(3):536-50. PubMed ID: 17714386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphagnan--a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH.
    Stalheim T; Ballance S; Christensen BE; Granum PE
    J Appl Microbiol; 2009 Mar; 106(3):967-76. PubMed ID: 19187129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system.
    Alonso-Hernando A; Alonso-Calleja C; Capita R
    Food Microbiol; 2009 Dec; 26(8):905-9. PubMed ID: 19835779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp (Pandalus borealis).
    Mejlholm O; Kjeldgaard J; Modberg A; Vest MB; Bøknaes N; Koort J; Björkroth J; Dalgaard P
    Int J Food Microbiol; 2008 Jun; 124(3):250-9. PubMed ID: 18456355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriocin-based strategies for food biopreservation.
    Gálvez A; Abriouel H; López RL; Ben Omar N
    Int J Food Microbiol; 2007 Nov; 120(1-2):51-70. PubMed ID: 17614151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of foodborne bacteria by native and modified protamine: importance of electrostatic interactions.
    Potter R; Truelstrup Hansen L; Gill TA
    Int J Food Microbiol; 2005 Aug; 103(1):23-34. PubMed ID: 16084263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients.
    Gutierrez J; Barry-Ryan C; Bourke P
    Int J Food Microbiol; 2008 May; 124(1):91-7. PubMed ID: 18378032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.
    Nobmann P; Smith A; Dunne J; Henehan G; Bourke P
    Int J Food Microbiol; 2009 Jan; 128(3):440-5. PubMed ID: 19012983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proteomic approach to study the acid response in Listeria monocytogenes.
    Phan-Thanh L; Mahouin F
    Electrophoresis; 1999 Aug; 20(11):2214-24. PubMed ID: 10493126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid and heat tolerance of persistent and nonpersistent Listeria monocytogenes food plant strains.
    Lundén J; Tolvanen R; Korkeala H
    Lett Appl Microbiol; 2008 Feb; 46(2):276-80. PubMed ID: 18179448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.