BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19200144)

  • 1. Degeneration of biogenic superparamagnetic magnetite.
    Li YL; Pfiffner SM; Dyar MD; Vali H; Konhauser K; Cole DR; Rondinone AJ; Phelps TJ
    Geobiology; 2009 Jan; 7(1):25-34. PubMed ID: 19200144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial production and characterization of superparamagnetic magnetite nanoparticles by Shewanella sp. HN-41.
    Lee JH; Roh Y; Hur HG
    J Microbiol Biotechnol; 2008 Sep; 18(9):1572-7. PubMed ID: 18852514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles.
    Roh Y; Vali H; Phelps TJ; Moon JW
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3517-20. PubMed ID: 17252802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY.
    Shin HY; Singhal N; Park JW
    Chemosphere; 2007 Jun; 68(6):1129-34. PubMed ID: 17349671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XAFS investigation of the interactions of U(VI) with secondary mineralization products from the bioreduction of Fe(III) oxides.
    O'Loughlin EJ; Kelly SD; Kemner KM
    Environ Sci Technol; 2010 Mar; 44(5):1656-61. PubMed ID: 20146462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of γ radiation on the bioavailability of Fe(III) minerals for microbial respiration.
    Brown AR; Wincott PL; LaVerne JA; Small JS; Vaughan DJ; Pimblott SM; Lloyd JR
    Environ Sci Technol; 2014 Sep; 48(18):10672-80. PubMed ID: 25195952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1.
    Li C; Yi X; Dang Z; Yu H; Zeng T; Wei C; Feng C
    Chemosphere; 2016 Feb; 144():2065-72. PubMed ID: 26583288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite.
    Pasakarnis TS; Boyanov MI; Kemner KM; Mishra B; O'Loughlin EJ; Parkin G; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6987-94. PubMed ID: 23621619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese in biogenic magnetite crystals from magnetotactic bacteria.
    Keim CN; Lins U; Farina M
    FEMS Microbiol Lett; 2009 Mar; 292(2):250-3. PubMed ID: 19187208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of magnetite stoichiometry on U(VI) reduction.
    Latta DE; Gorski CA; Boyanov MI; O'Loughlin EJ; Kemner KM; Scherer MM
    Environ Sci Technol; 2012 Jan; 46(2):778-86. PubMed ID: 22148359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.
    Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR
    Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic magnetite formation through anaerobic biooxidation of Fe(II).
    Chaudhuri SK; Lack JG; Coates JD
    Appl Environ Microbiol; 2001 Jun; 67(6):2844-8. PubMed ID: 11375205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallite sizes and lattice parameters of nano-biomagnetite particles.
    Moon JW; Rawn CJ; Rondinone AJ; Wang W; Vali H; Yeary LW; Love LJ; Kirkham MJ; Gu B; Phelps TJ
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8298-306. PubMed ID: 21121331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD.
    Coker VS; Byrne JM; Telling ND; VAN DER Laan G; Lloyd JR; Hitchcock AP; Wang J; Pattrick RA
    Geobiology; 2012 Jul; 10(4):347-54. PubMed ID: 22515480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Hg(II) to Hg(0) by magnetite.
    Wiatrowski HA; Das S; Kukkadapu R; Ilton ES; Barkay T; Yee N
    Environ Sci Technol; 2009 Jul; 43(14):5307-13. PubMed ID: 19708358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.