BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19200237)

  • 1. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
    Hájos N; Ellender TJ; Zemankovics R; Mann EO; Exley R; Cragg SJ; Freund TF; Paulsen O
    Eur J Neurosci; 2009 Jan; 29(2):319-27. PubMed ID: 19200237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.
    Rambani K; Vukasinovic J; Glezer A; Potter SM
    J Neurosci Methods; 2009 Jun; 180(2):243-54. PubMed ID: 19443039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro.
    Mann EO; Suckling JM; Hajos N; Greenfield SA; Paulsen O
    Neuron; 2005 Jan; 45(1):105-17. PubMed ID: 15629706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro.
    Traub RD; Bibbig A; LeBeau FE; Buhl EH; Whittington MA
    Annu Rev Neurosci; 2004; 27():247-78. PubMed ID: 15217333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices.
    Nimmrich V; Maier N; Schmitz D; Draguhn A
    J Physiol; 2005 Mar; 563(Pt 3):663-70. PubMed ID: 15661820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.
    Blake AJ; Rodgers FC; Bassuener A; Hippensteel JA; Pearce TM; Pearce TR; Zarnowska ED; Pearce RA; Williams JC
    J Neurosci Methods; 2010 May; 189(1):5-13. PubMed ID: 20219536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for visually guided whole-cell recordings in brain slices exhibiting spontaneous rhythmic activity.
    Case L; Broberger C
    J Neurosci Methods; 2013 Jan; 212(1):64-71. PubMed ID: 23017981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content.
    Hájos N; Mody I
    J Neurosci Methods; 2009 Oct; 183(2):107-13. PubMed ID: 19524611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential generation of two distinct synapse-driven network patterns in developing neocortex.
    Allène C; Cattani A; Ackman JB; Bonifazi P; Aniksztejn L; Ben-Ari Y; Cossart R
    J Neurosci; 2008 Nov; 28(48):12851-63. PubMed ID: 19036979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network.
    Huchzermeyer C; Berndt N; Holzhütter HG; Kann O
    J Cereb Blood Flow Metab; 2013 Feb; 33(2):263-71. PubMed ID: 23168532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of 4-aminopyridine-induced neuronal activity and local pO(2)in rat hippocampal slices by changing the flow rate of the superfusion medium.
    Sydorenko VG; Komarov OS; Sushko BS; Romanov AK; Isaeva EV; Isaev DS
    Fiziol Zh (1994); 2016; 62(4):3-11. PubMed ID: 29975468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment.
    Brown JT; Davies CH; Randall AD
    Eur J Neurosci; 2007 May; 25(10):2982-90. PubMed ID: 17561812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices.
    Stopps M; Allen N; Barrett R; Choudhury HI; Jarolimek W; Johnson M; Kuenzi FM; Maubach KA; Nagano N; Seabrook GR
    J Neurosci Methods; 2004 Jan; 132(2):137-48. PubMed ID: 14706711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.
    Huchzermeyer C; Albus K; Gabriel HJ; Otáhal J; Taubenberger N; Heinemann U; Kovács R; Kann O
    J Neurosci; 2008 Jan; 28(5):1153-62. PubMed ID: 18234893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.
    Hájos N; Pálhalmi J; Mann EO; Németh B; Paulsen O; Freund TF
    J Neurosci; 2004 Oct; 24(41):9127-37. PubMed ID: 15483131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent high-frequency network oscillations (100-300 Hz) in rat hippocampal slices.
    Papatheodoropoulos C
    Neurosci Lett; 2007 Mar; 414(3):197-202. PubMed ID: 17316998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-coupled oscillator models can predict hippocampal inhibitory synaptic connections.
    Skinner FK; Wu C; Zhang L
    Eur J Neurosci; 2001 Jun; 13(12):2183-94. PubMed ID: 11454021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network.
    Bartos M; Vida I; Frotscher M; Geiger JR; Jonas P
    J Neurosci; 2001 Apr; 21(8):2687-98. PubMed ID: 11306622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
    Fischer V; Both M; Draguhn A; Egorov AV
    J Neurochem; 2014 Jun; 129(5):792-805. PubMed ID: 24673342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.