These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 19200556)
1. New biodegradable materials produced by ring opening polymerisation of poly(L-lactide) on porous silicon substrates. McInnes SJ; Thissen H; Choudhury NR; Voelcker NH J Colloid Interface Sci; 2009 Apr; 332(2):336-44. PubMed ID: 19200556 [TBL] [Abstract][Full Text] [Related]
2. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). McInnes SJ; Irani Y; Williams KA; Voelcker NH Nanomedicine (Lond); 2012 Jul; 7(7):995-1016. PubMed ID: 22394185 [TBL] [Abstract][Full Text] [Related]
3. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique. Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization. Broström J; Boss A; Chronakis IS Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708 [TBL] [Abstract][Full Text] [Related]
5. L-Phe end-capped poly(L-lactide) as macroinitiator for the synthesis of poly(L-lactide)-B-poly(L-lysine) block copolymer. Fan Y; Chen G; Tanaka J; Tateishi T Biomacromolecules; 2005; 6(6):3051-6. PubMed ID: 16283726 [TBL] [Abstract][Full Text] [Related]
6. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Ba C; Yang J; Hao Q; Liu X; Cao A Biomacromolecules; 2003; 4(6):1827-34. PubMed ID: 14606915 [TBL] [Abstract][Full Text] [Related]
7. Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior. Bodiford NK; McInnes SJP; Voelcker NH; Coffer JL Biomed Microdevices; 2018 Aug; 20(3):71. PubMed ID: 30097808 [TBL] [Abstract][Full Text] [Related]
8. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Sarazin P; Roy X; Favis BD Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611 [TBL] [Abstract][Full Text] [Related]
9. Amphiphilic poly(L-lactide)-b-dendritic poly(L-lysine)s synthesized with a metal-free catalyst and new dendron initiators: chemical preparation and characterization. Li Y; Li Q; Li F; Zhang H; Jia L; Yu J; Fang Q; Cao A Biomacromolecules; 2006 Jan; 7(1):224-31. PubMed ID: 16398519 [TBL] [Abstract][Full Text] [Related]
10. Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(L-cysteine)-block-poly(L-lactide). Sun J; Chen X; Lu T; Liu S; Tian H; Guo Z; Jing X Langmuir; 2008 Sep; 24(18):10099-106. PubMed ID: 18698858 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering. Carfì Pavia F; La Carrubba V; Brucato V; Palumbo FS; Giammona G Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():301-8. PubMed ID: 24907764 [TBL] [Abstract][Full Text] [Related]
13. Reduced adhesion of blood cells to biodegradable polymers by introducing phosphorylcholine moieties. Iwasaki Y; Tojo Y; Kurosaki T; Nakabayashi N J Biomed Mater Res A; 2003 May; 65(2):164-9. PubMed ID: 12734808 [TBL] [Abstract][Full Text] [Related]
14. Novel preparation method for poly(L-lactide)-based block copolymers: extended chain crystallites as a solid-state macro-coinitiator. Tsuji H; Nishikawa M; Sakamoto Y; Itsuno S Biomacromolecules; 2007 May; 8(5):1730-8. PubMed ID: 17432901 [TBL] [Abstract][Full Text] [Related]
15. New preparation of structurally symmetric, biodegradable poly(L-lactide) disulfides and PLLA-stabilized, photoluminescent CdSe quantum dots. Hou X; Li Q; Jia L; Li Y; Zhu Y; Cao A Macromol Biosci; 2009 Jun; 9(6):551-62. PubMed ID: 19263461 [TBL] [Abstract][Full Text] [Related]
16. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. Liu Q; Cai C; Dong CM J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers. Peng T; Cheng SX; Zhuo RX J Biomed Mater Res A; 2006 Jan; 76(1):163-73. PubMed ID: 16258962 [TBL] [Abstract][Full Text] [Related]
18. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
19. Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA Triblock Copolymers as Efficient Gene Delivery System. Abebe DG; Kandil R; Kraus T; Elsayed M; Merkel OM; Fujiwara T Macromol Biosci; 2015 May; 15(5):698-711. PubMed ID: 25644720 [TBL] [Abstract][Full Text] [Related]
20. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications. Chadwick EG; Clarkin OM; Raghavendra R; Tanner DA Biomed Mater Eng; 2014; 24(3):1563-74. PubMed ID: 24840195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]