These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19200571)

  • 21. Two-stage reduction/subsequent oxidation treatment of 2,2',4,4'-tetrabromodiphenyl ether in aqueous solutions: kinetic, pathway and toxicity.
    Luo S; Yang S; Xue Y; Liang F; Sun C
    J Hazard Mater; 2011 Sep; 192(3):1795-803. PubMed ID: 21807460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of reaction mechanisms by electrospray ionization mass spectrometry: characterization of intermediates in the degradation of phenol by a novel iron/magnetite/hydrogen peroxide heterogeneous oxidation system.
    Moura FC; Araujo MH; Dalmázio I; Alves TM; Santos LS; Eberlin MN; Augusti R; Lago RM
    Rapid Commun Mass Spectrom; 2006; 20(12):1859-63. PubMed ID: 16715481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-catalyzed tandem oxidative coupling and annulation: an efficient approach to construct polysubstituted benzofurans.
    Guo X; Yu R; Li H; Li Z
    J Am Chem Soc; 2009 Dec; 131(47):17387-93. PubMed ID: 19899754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental study on the thermal oxidation of 2-chlorophenol in air over the temperature range 450-900 degrees C.
    Briois C; Visez N; Baillet C; Sawerysyn JP
    Chemosphere; 2006 Mar; 62(11):1806-16. PubMed ID: 16213547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.
    Zazo JA; Casas JA; Mohedano AF; Rodriguez JJ
    Water Res; 2009 Sep; 43(16):4063-9. PubMed ID: 19616818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction mechanism of 3-chlorophenol with OH, H in aqueous solution.
    Zhu J; Chen YF; Dong WB; Pan XX; Hou HQ
    J Environ Sci (China); 2003 Jan; 15(1):55-9. PubMed ID: 12602603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of hydroxylated and dimeric intermediates during oxidation of chlorinated phenols in aqueous solution.
    Hirvonen A; Trapido M; Hentunen J; Tarhanen J
    Chemosphere; 2000 Oct; 41(8):1211-8. PubMed ID: 10901249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic pathways of the hydroxyl radical reactions of quinoline. 1. Identification, distribution, and yields of hydroxylated products.
    Nicolaescu AR; Wiest O; Kamat PV
    J Phys Chem A; 2005 Mar; 109(12):2822-8. PubMed ID: 16833596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling.
    Zhang Y; Zhou M; Hao X; Lei L
    Chemosphere; 2007 Mar; 67(4):702-11. PubMed ID: 17169402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-degradation of chlorophenols in the aqueous solution.
    Czaplicka M
    J Hazard Mater; 2006 Jun; 134(1-3):45-59. PubMed ID: 16325999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of dibenzofuran, dibenzo-p-dioxin and their hydroxylated derivatives from catechol.
    Altarawneh M; Dlugogorski BZ
    Phys Chem Chem Phys; 2015 Jan; 17(3):1822-30. PubMed ID: 25474266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols.
    Rastogi A; Al-Abed SR; Dionysiou DD
    Water Res; 2009 Feb; 43(3):684-94. PubMed ID: 19038413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical study on the formation mechanism of pre-intermediates for PXDD/Fs from 2-Bromophenol and 2-Chlorophenol precursors via radical/molecule reactions.
    Pan W; Fu J; Zhang A
    Environ Pollut; 2017 Jun; 225():439-449. PubMed ID: 28302335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor.
    Bian W; Ying X; Shi J
    J Hazard Mater; 2009 Mar; 162(2-3):906-12. PubMed ID: 18621482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study of kinetic modelling and reaction pathway of 2,4-dichlorophenol transformation by photo-fenton-like oxidation.
    Chu W; Kwan CY; Chan KH; Kam SK
    J Hazard Mater; 2005 May; 121(1-3):119-26. PubMed ID: 15885412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water.
    Sun Z; Takahashi F; Odaka Y; Fukushi K; Oshima Y; Yamamoto K
    Chemosphere; 2007 Jan; 66(1):151-7. PubMed ID: 17005235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening of xenobiotic compounds degrading microorganisms using biosensor techniques.
    Beyersdorf-Radeck B; Riedel K; Karlson U; Bachmann TT; Schmid RD
    Microbiol Res; 1998 Nov; 153(3):239-45. PubMed ID: 9880928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions.
    Gaya UI; Abdullah AH; Zainal Z; Hussein MZ
    J Hazard Mater; 2009 Aug; 168(1):57-63. PubMed ID: 19268454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential mechanism for pentachlorophenol-induced carcinogenicity: a novel mechanism for metal-independent production of hydroxyl radicals.
    Zhu BZ; Shan GQ
    Chem Res Toxicol; 2009 Jun; 22(6):969-77. PubMed ID: 19408893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives.
    Sietmann R; Gesell M; Hammer E; Schauer F
    Chemosphere; 2006 Jul; 64(4):672-85. PubMed ID: 16352329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.