These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1920070)

  • 41. Protein adsorption and platelet adhesion onto ion-containing polyurethanes.
    Alibeik S; Sheardown H; Rizkalla AS; Mequanint K
    J Biomater Sci Polym Ed; 2007; 18(9):1195-210. PubMed ID: 17931508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of neutral polymers on the mechanics of red blood cell adhesion onto coated glass surfaces.
    Zhengwen Z; Meiselman HJ; Neu B
    Biorheology; 2015; 52(5-6):379-89. PubMed ID: 26577171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.
    Xu LC; Siedlecki CA
    Biomed Mater; 2014 Jun; 9(3):035003. PubMed ID: 24687453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of the molecular structure of surface-attached poly(N-alkyl acrylamide) coatings on the interaction of surfaces with proteins, cells and blood platelets.
    Pandiyarajan CK; Prucker O; Zieger B; Rühe J
    Macromol Biosci; 2013 Jul; 13(7):873-84. PubMed ID: 23596084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physical and hydrodynamic factors affecting erythrocyte adhesion to polymer surfaces.
    Chang G; Absolom DR; Strong AB; Stubley GD; Zingg W
    J Biomed Mater Res; 1988 Jan; 22(1):13-29. PubMed ID: 3343255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of porosity and surface hydrophilicity on migration of epithelial tissue over synthetic polymer.
    Steele JG; Johnson G; McLean KM; Beumer GJ; Griesser HJ
    J Biomed Mater Res; 2000 Jun; 50(4):475-82. PubMed ID: 10756305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion.
    Yuan J; Chen L; Jiang X; Shen J; Lin S
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):87-94. PubMed ID: 15542345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of temperature on the extent of platelet adhesion to foreign surfaces.
    Absolom DR; Policova Z; Neumann AW; Zingg W
    Trans Am Soc Artif Intern Organs; 1983; 29():425-9. PubMed ID: 6673263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials.
    Milner KR; Snyder AJ; Siedlecki CA
    J Biomed Mater Res A; 2006 Mar; 76(3):561-70. PubMed ID: 16278867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.
    Balakrishnan B; Kumar DS; Yoshida Y; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(17):3495-502. PubMed ID: 15621239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optically patternable polymer films as model interfaces to study cellular behaviour on topographically structured materials.
    Minelli C; Yamamoto A; Kim MJ
    J Biomater Sci Polym Ed; 2011; 22(4-6):577-88. PubMed ID: 20566046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. No platelet can adhere--largely improved blood compatibility on nanostructured superhydrophobic surfaces.
    Sun T; Tan H; Han D; Fu Q; Jiang L
    Small; 2005 Oct; 1(10):959-63. PubMed ID: 17193377
    [No Abstract]   [Full Text] [Related]  

  • 54. Lindholm blood coagulation test values of some glow-discharge polymer surfaces.
    Yasuda H; Bumgarner MO; Mason RG
    Biomater Med Devices Artif Organs; 1976; 4(3-4):307-21. PubMed ID: 1021156
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface modification for improved blood compatibility.
    Jacobs H; Grainger D; Okano T; Kim SW
    Artif Organs; 1988 Dec; 12(6):506-7. PubMed ID: 3063242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Platelet adhesion to smooth and rough hydrophobic and hydrophilic surfaces under conditions of static exposure and laminar flow.
    Zingg W; Neumann AW; Strong AB; Hum OS; Absolom DR
    Biomaterials; 1981 Jul; 2(3):156-8. PubMed ID: 7272405
    [No Abstract]   [Full Text] [Related]  

  • 57. Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces.
    Neumann AW; Absolom DR; van Oss CJ; Zingg W
    Cell Biophys; 1979 Mar; 1(1):79-92. PubMed ID: 95170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamic studies of cellular adhesion.
    Absolom DR; Neumann AW; Zingg W; van Oss CJ
    Trans Am Soc Artif Intern Organs; 1979; 25():152-8. PubMed ID: 524575
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A stagnation point flow technique to measure platelet adhesion onto polymer films from native blood--a technical report.
    Wurzinger LJ; Blasberg P; Horii F; Schmid-Schönbein H
    Thromb Res; 1986 Nov; 44(3):401-6. PubMed ID: 3798405
    [No Abstract]   [Full Text] [Related]  

  • 60. Bonding erythrocytes to plastic substrates by glow-discharge activation.
    Benedict RW; Williams MC
    Biomater Med Devices Artif Organs; 1979; 7(4):477-93. PubMed ID: 117847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.