BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 19201010)

  • 1. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of Zn(II) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source].
    Li SJ; Chen TH; Zhou YF; Yue ZB; Jin J; Liu C
    Huan Jing Ke Xue; 2012 Jan; 33(1):293-8. PubMed ID: 22452225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations.
    Tsukamoto TK; Killion HA; Miller GC
    Water Res; 2004 Mar; 38(6):1405-18. PubMed ID: 15016517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.
    Kalin M; Fyson A; Wheeler WN
    Sci Total Environ; 2006 Aug; 366(2-3):395-408. PubMed ID: 16375949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological sulphate reduction using food industry wastes as carbon sources.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Costa MC
    Biodegradation; 2009 Jul; 20(4):559-67. PubMed ID: 19137404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.
    Cruz Viggi C; Pagnanelli F; Cibati A; Uccelletti D; Palleschi C; Toro L
    Water Res; 2010 Jan; 44(1):151-8. PubMed ID: 19804893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage.
    Riefler RG; Krohn J; Stuart B; Socotch C
    Sci Total Environ; 2008 May; 394(2-3):222-9. PubMed ID: 18313728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.
    Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA
    Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    J Hazard Mater; 2009 Jan; 161(2-3):1157-65. PubMed ID: 18541372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.