BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 19201085)

  • 1. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.
    Zhang S; Zhao X; Niu H; Shi Y; Cai Y; Jiang G
    J Hazard Mater; 2009 Aug; 167(1-3):560-6. PubMed ID: 19201085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic.
    Wang N; Zhu L; Wang M; Wang D; Tang H
    Ultrason Sonochem; 2010 Jan; 17(1):78-83. PubMed ID: 19620016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles.
    Zhang J; Zhuang J; Gao L; Zhang Y; Gu N; Feng J; Yang D; Zhu J; Yan X
    Chemosphere; 2008 Nov; 73(9):1524-8. PubMed ID: 18804842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2.
    Wang H; Huang Y
    J Hazard Mater; 2011 Jul; 191(1-3):163-9. PubMed ID: 21570769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts.
    Rey A; Bahamonde A; Casas JA; Rodríguez JJ
    Water Sci Technol; 2010; 61(11):2769-78. PubMed ID: 20489249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation.
    Zelmanov G; Semiat R
    Water Res; 2008 Jan; 42(1-2):492-8. PubMed ID: 17714754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical oxidation of 2,6-dimethylaniline by electrochemically generated Fenton's reagent.
    Masomboon N; Ratanatamskul C; Lu MC
    J Hazard Mater; 2010 Apr; 176(1-3):92-8. PubMed ID: 19963316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient removal of organic pollutants with magnetic Nanoscaled BiFeO(3) as a reusable heterogeneous fenton-like catalyst.
    Luo W; Zhu L; Wang N; Tang H; Cao M; She Y
    Environ Sci Technol; 2010 Mar; 44(5):1786-91. PubMed ID: 20131791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-cyclodextrins-based inclusion complexes of CoFe(2)O(4) magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection.
    He S; Shi W; Zhang X; Li J; Huang Y
    Talanta; 2010 Jun; 82(1):377-83. PubMed ID: 20685481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study.
    Kusić H; Koprivanac N; Bozić AL; Selanec I
    J Hazard Mater; 2006 Aug; 136(3):632-44. PubMed ID: 16466856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate.
    Yan J; Lei M; Zhu L; Anjum MN; Zou J; Tang H
    J Hazard Mater; 2011 Feb; 186(2-3):1398-404. PubMed ID: 21237557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection.
    Wei H; Wang E
    Anal Chem; 2008 Mar; 80(6):2250-4. PubMed ID: 18290671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.
    Calleja G; Melero JA; Martínez F; Molina R
    Water Res; 2005 May; 39(9):1741-50. PubMed ID: 15899272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.
    Zazo JA; Casas JA; Mohedano AF; Rodriguez JJ
    Water Res; 2009 Sep; 43(16):4063-9. PubMed ID: 19616818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes.
    Xiang L; Royer S; Zhang H; Tatibouët JM; Barrault J; Valange S
    J Hazard Mater; 2009 Dec; 172(2-3):1175-84. PubMed ID: 19709804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions.
    Saputra E; Muhammad S; Sun H; Ang HM; Tadé MO; Wang S
    J Colloid Interface Sci; 2013 Oct; 407():467-73. PubMed ID: 23891446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography-mass spectrometry.
    Meng J; Shi C; Wei B; Yu W; Deng C; Zhang X
    J Chromatogr A; 2011 May; 1218(20):2841-7. PubMed ID: 21492861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH.
    Dao YH; De Laat J
    Water Res; 2011 May; 45(11):3309-17. PubMed ID: 21514949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts.
    Zelmanov G; Semiat R
    Water Res; 2008 Aug; 42(14):3848-56. PubMed ID: 18657285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: effect of H2O2 dosage and temperature.
    Santos A; Yustos P; Rodriguez S; Simon E; Garcia-Ochoa F
    J Hazard Mater; 2007 Jul; 146(3):595-601. PubMed ID: 17524556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.