BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19201265)

  • 1. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy.
    Liang S; Yu Y; Yang P; Gu S; Xue Y; Chen X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Mar; 877(7):627-34. PubMed ID: 19201265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the integrin-linked kinase interactome using SILAC.
    Dobreva I; Fielding A; Foster LJ; Dedhar S
    J Proteome Res; 2008 Apr; 7(4):1740-9. PubMed ID: 18327965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression.
    Xu Y; Liang S; Shen G; Xu X; Liu Q; Xu Z; Gong F; Tang M; Wei Y
    Biotechnol Appl Biochem; 2009 Jul; 54(1):11-20. PubMed ID: 19250064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells.
    Bürckstümmer T; Bennett KL; Preradovic A; Schütze G; Hantschel O; Superti-Furga G; Bauch A
    Nat Methods; 2006 Dec; 3(12):1013-9. PubMed ID: 17060908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry.
    Forsman A; Rüetschi U; Ekholm J; Rymo L
    J Proteome Res; 2008 Jun; 7(6):2309-19. PubMed ID: 18457437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome.
    Bezstarosti K; Ghamari A; Grosveld FG; Demmers JA
    J Proteome Res; 2010 Sep; 9(9):4464-75. PubMed ID: 20593818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid identification of 14-3-3-binding proteins by protein microarray analysis.
    Satoh J; Nanri Y; Yamamura T
    J Neurosci Methods; 2006 Apr; 152(1-2):278-88. PubMed ID: 16260042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional proteomics.
    Monti M; Orrù S; Pagnozzi D; Pucci P
    Clin Chim Acta; 2005 Jul; 357(2):140-50. PubMed ID: 15946657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C.
    Heide H; Nordhues A; Drepper F; Nick S; Schulz-Raffelt M; Haehnel W; Schroda M
    Proteomics; 2009 Jun; 9(11):3079-89. PubMed ID: 19526558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes.
    Chang IF
    Proteomics; 2006 Dec; 6(23):6158-66. PubMed ID: 17072909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells.
    Suchanek M; Radzikowska A; Thiele C
    Nat Methods; 2005 Apr; 2(4):261-7. PubMed ID: 15782218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbiased identification of protein-bait interactions using biochemical enrichment and quantitative proteomics.
    Ong SE
    Cold Spring Harb Protoc; 2010 Mar; 2010(3):pdb.prot5400. PubMed ID: 20194469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel 14-3-3ζ interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK).
    Ge F; Li WL; Bi LJ; Tao SC; Zhang ZP; Zhang XE
    J Proteome Res; 2010 Nov; 9(11):5848-58. PubMed ID: 20879785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combinatorial approach to studying protein complex composition by employing size-exclusion chromatography and proteome analysis.
    Li SS; Giometti CS
    J Sep Sci; 2007 Jul; 30(10):1549-55. PubMed ID: 17623436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma.
    Bai C; Tang S; Bai C; Chen X
    Amino Acids; 2014 Apr; 46(4):841-52. PubMed ID: 24363202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics analysis of pancreatic zymogen granule membrane proteins.
    Chen X; Andrews PC
    Methods Mol Biol; 2009; 528():327-38. PubMed ID: 19153703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin tagging coupled with amino acid-coded mass tagging for efficient and precise screening of interaction proteome in mammalian cells.
    He YF; Bao HM; Xiao XF; Zuo S; Du RY; Tang SW; Yang PY; Chen X
    Proteomics; 2009 Dec; 9(24):5414-24. PubMed ID: 19834888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein.
    Hikita T; Taya S; Fujino Y; Taneichi-Kuroda S; Ohta K; Tsuboi D; Shinoda T; Kuroda K; Funahashi Y; Uraguchi-Asaki J; Hashimoto R; Kaibuchi K
    J Neurochem; 2009 Sep; 110(5):1567-74. PubMed ID: 19573021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics.
    Monti M; Cozzolino M; Cozzolino F; Vitiello G; Tedesco R; Flagiello A; Pucci P
    Expert Rev Proteomics; 2009 Apr; 6(2):159-69. PubMed ID: 19385943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins.
    Law IK; Liu L; Xu A; Lam KS; Vanhoutte PM; Che CM; Leung PT; Wang Y
    Proteomics; 2009 May; 9(9):2444-56. PubMed ID: 19343720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.