BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19201537)

  • 1. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis.
    Wang H; Jia Y; Wang S; Zhu H; Wu X
    J Hazard Mater; 2009 Aug; 167(1-3):641-6. PubMed ID: 19201537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bioavailability of adsorbed Cd on typical oxides of sediment in Phragmites australis].
    Wang H; Jia YF; Liu L; Zhu HJ; Wu X; Wang SY
    Huan Jing Ke Xue; 2009 Jun; 30(6):1773-8. PubMed ID: 19662867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bioavailability of cadmium associated with oxides in sediment: effects of species of mineral, association form and aging on bioavailability].
    Wang H; Jia YF; Liu L; Wang SY
    Huan Jing Ke Xue; 2009 Oct; 30(10):3055-9. PubMed ID: 19968130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.
    Wang H; Jia Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):743-751. PubMed ID: 27752952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation of heavy metals by Phragmites australis cultivated in synthesized substrates.
    Wang H; Jia Y
    J Environ Sci (China); 2009; 21(10):1409-14. PubMed ID: 19999996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desorption of cadmium from goethite: effects of pH, temperature and aging.
    Mustafa G; Kookana RS; Singh B
    Chemosphere; 2006 Jul; 64(5):856-65. PubMed ID: 16330070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of speciation on the bioavailability of particle-bound cadmium in sediments].
    Wu X; Jia YF; Zhu HJ; Wang H
    Huan Jing Ke Xue; 2010 Jan; 31(1):179-84. PubMed ID: 20329536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation changes of cadmium in mangrove (Kandelia candel (L.)) rhizosphere sediments.
    Jingchun L; Chongling Y; Ruifeng Z; Haoliang L; Guangqiu Q
    Bull Environ Contam Toxicol; 2008 Mar; 80(3):231-6. PubMed ID: 18193491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations.
    Mustafa G; Singh B; Kookana RS
    Chemosphere; 2004 Dec; 57(10):1325-33. PubMed ID: 15519377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sediment composition on cadmium bioaccumulation in the clam Meretrix meretrix Linnaeus.
    Wu X; Xie L; Xu L; Wang S; Jia Y
    Environ Toxicol Chem; 2013 Apr; 32(4):841-7. PubMed ID: 23355485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds.
    Alhashemi AS; Karbassi AR; Kiabi BH; Monavari SM; Nabavi SM; Sekhavatjou MS
    Biol Trace Elem Res; 2011 Sep; 142(3):500-16. PubMed ID: 20694580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrocyanide adsorption on aluminum oxides.
    Bushey JT; Dzombak DA
    J Colloid Interface Sci; 2004 Apr; 272(1):46-51. PubMed ID: 14985021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review.
    Bourikas K; Kordulis C; Vakros J; Lycourghiotis A
    Adv Colloid Interface Sci; 2004 Aug; 110(3):97-120. PubMed ID: 15328060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration.
    Weis JS; Weis P
    Environ Int; 2004 Jul; 30(5):685-700. PubMed ID: 15051245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide.
    Taujale S; Zhang H
    Environ Sci Technol; 2012 Mar; 46(5):2764-71. PubMed ID: 22309023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heavy metal stress on emerging plants community constructions in wetland.
    Peng H; Geng W; Yong-quan W; Mao-teng L; Jun X; Long-jiang Y
    Water Sci Technol; 2010; 62(10):2459-66. PubMed ID: 21076234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya.
    Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM
    Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides.
    Duarte B; Delgado M; Caçador I
    Chemosphere; 2007 Oct; 69(5):836-40. PubMed ID: 17585999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides.
    Pokrovsky OS; Viers J; Freydier R
    J Colloid Interface Sci; 2005 Nov; 291(1):192-200. PubMed ID: 15963523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.