These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 19201693)

  • 1. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes.
    Rodriguez PC; Ernstoff MS; Hernandez C; Atkins M; Zabaleta J; Sierra R; Ochoa AC
    Cancer Res; 2009 Feb; 69(4):1553-60. PubMed ID: 19201693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion.
    Zea AH; Rodriguez PC; Atkins MB; Hernandez C; Signoretti S; Zabaleta J; McDermott D; Quiceno D; Youmans A; O'Neill A; Mier J; Ochoa AC
    Cancer Res; 2005 Apr; 65(8):3044-8. PubMed ID: 15833831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma.
    Ochoa AC; Zea AH; Hernandez C; Rodriguez PC
    Clin Cancer Res; 2007 Jan; 13(2 Pt 2):721s-726s. PubMed ID: 17255300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets.
    Lang S; Bruderek K; Kaspar C; Höing B; Kanaan O; Dominas N; Hussain T; Droege F; Eyth C; Hadaschik B; Brandau S
    Clin Cancer Res; 2018 Oct; 24(19):4834-4844. PubMed ID: 29914893
    [No Abstract]   [Full Text] [Related]  

  • 5. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy.
    Finke J; Ko J; Rini B; Rayman P; Ireland J; Cohen P
    Int Immunopharmacol; 2011 Jul; 11(7):856-61. PubMed ID: 21315783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Severe COVID-19 Is Characterized by an Impaired Type I Interferon Response and Elevated Levels of Arginase Producing Granulocytic Myeloid Derived Suppressor Cells.
    Dean MJ; Ochoa JB; Sanchez-Pino MD; Zabaleta J; Garai J; Del Valle L; Wyczechowska D; Baiamonte LB; Philbrook P; Majumder R; Vander Heide RS; Dunkenberger L; Thylur RP; Nossaman B; Roberts WM; Chapple AG; Wu J; Hicks C; Collins J; Luke B; Johnson R; Koul HK; Rees CA; Morris CR; Garcia-Diaz J; Ochoa AC
    Front Immunol; 2021; 12():695972. PubMed ID: 34341659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples.
    Kotsakis A; Harasymczuk M; Schilling B; Georgoulias V; Argiris A; Whiteside TL
    J Immunol Methods; 2012 Jul; 381(1-2):14-22. PubMed ID: 22522114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Arginase 1 Liberates Potent T Cell Immunostimulatory Activity of Human Neutrophil Granulocytes.
    Vonwirth V; Bülbül Y; Werner A; Echchannaoui H; Windschmitt J; Habermeier A; Ioannidis S; Shin N; Conradi R; Bros M; Tenzer S; Theobald M; Closs EI; Munder M
    Front Immunol; 2020; 11():617699. PubMed ID: 33717053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma.
    Tate DJ; Vonderhaar DJ; Caldas YA; Metoyer T; Patterson JR; Aviles DH; Zea AH
    J Hematol Oncol; 2008 Sep; 1():14. PubMed ID: 18817562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients.
    Heuvers ME; Muskens F; Bezemer K; Lambers M; Dingemans AC; Groen HJM; Smit EF; Hoogsteden HC; Hegmans JPJJ; Aerts JGJV
    Lung Cancer; 2013 Sep; 81(3):468-474. PubMed ID: 23850196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloid-Derived Suppressor Cell Subset Accumulation in Renal Cell Carcinoma Parenchyma Is Associated with Intratumoral Expression of IL1β, IL8, CXCL5, and Mip-1α.
    Najjar YG; Rayman P; Jia X; Pavicic PG; Rini BI; Tannenbaum C; Ko J; Haywood S; Cohen P; Hamilton T; Diaz-Montero CM; Finke J
    Clin Cancer Res; 2017 May; 23(9):2346-2355. PubMed ID: 27799249
    [No Abstract]   [Full Text] [Related]  

  • 12. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients.
    Darcy CJ; Minigo G; Piera KA; Davis JS; McNeil YR; Chen Y; Volkheimer AD; Weinberg JB; Anstey NM; Woodberry T
    Crit Care; 2014 Aug; 18(4):R163. PubMed ID: 25084831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients.
    Marini O; Spina C; Mimiola E; Cassaro A; Malerba G; Todeschini G; Perbellini O; Scupoli M; Carli G; Facchinelli D; Cassatella M; Scapini P; Tecchio C
    Oncotarget; 2016 May; 7(19):27676-88. PubMed ID: 27050283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human splenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are strategically located immune regulatory cells in cancer.
    Tavukcuoglu E; Horzum U; Yanik H; Uner A; Yoyen-Ermis D; Nural SK; Aydin B; Sokmensuer C; Karakoc D; Yilmaz KB; Hamaloglu E; Esendagli G
    Eur J Immunol; 2020 Dec; 50(12):2067-2074. PubMed ID: 32691408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated transcriptional-phenotypic analysis captures systemic immunomodulation following antiangiogenic therapy in renal cell carcinoma patients.
    Rinchai D; Verzoni E; Huber V; Cova A; Squarcina P; De Cecco L; de Braud F; Ratta R; Dugo M; Lalli L; Vallacchi V; Rodolfo M; Roelands J; Castelli C; Chaussabel D; Procopio G; Bedognetti D; Rivoltini L
    Clin Transl Med; 2021 Jun; 11(6):e434. PubMed ID: 34185403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion.
    Leonard W; Dufait I; Schwarze JK; Law K; Engels B; Jiang H; Van den Berge D; Gevaert T; Storme G; Verovski V; Breckpot K; De Ridder M
    Radiother Oncol; 2016 May; 119(2):291-9. PubMed ID: 26874542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the clinical significance of lymphocyte subsets and myeloid suppressor cells in patients with renal carcinoma.
    Li Y; Wu Z; Ni C; Li Y; Wang P
    Discov Oncol; 2024 Sep; 15(1):512. PubMed ID: 39347882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events.
    Schouppe E; Mommer C; Movahedi K; Laoui D; Morias Y; Gysemans C; Luyckx A; De Baetselier P; Van Ginderachter JA
    Eur J Immunol; 2013 Nov; 43(11):2930-42. PubMed ID: 23878002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.
    Toor SM; Syed Khaja AS; El Salhat H; Faour I; Kanbar J; Quadri AA; Albashir M; Elkord E
    Cancer Immunol Immunother; 2017 Jun; 66(6):753-764. PubMed ID: 28283696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained.
    Ko JS; Rayman P; Ireland J; Swaidani S; Li G; Bunting KD; Rini B; Finke JH; Cohen PA
    Cancer Res; 2010 May; 70(9):3526-36. PubMed ID: 20406969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.