These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 19201801)
1. Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. Guss AM; Kulkarni G; Metcalf WW J Bacteriol; 2009 Apr; 191(8):2826-33. PubMed ID: 19201801 [TBL] [Abstract][Full Text] [Related]
2. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. Rohlin L; Gunsalus RP BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638 [TBL] [Abstract][Full Text] [Related]
3. Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase. Mand TD; Kulkarni G; Metcalf WW J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30012731 [TBL] [Abstract][Full Text] [Related]
4. The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. Maeder DL; Anderson I; Brettin TS; Bruce DC; Gilna P; Han CS; Lapidus A; Metcalf WW; Saunders E; Tapia R; Sowers KR J Bacteriol; 2006 Nov; 188(22):7922-31. PubMed ID: 16980466 [TBL] [Abstract][Full Text] [Related]
5. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192 [TBL] [Abstract][Full Text] [Related]
6. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea. Duszenko N; Buan NR Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268 [TBL] [Abstract][Full Text] [Related]
7. Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the ileS gene from the archaeon Methanosarcina barkeri fusaro. Boccazzi P; Zhang JK; Metcalf WW J Bacteriol; 2000 May; 182(9):2611-8. PubMed ID: 10762266 [TBL] [Abstract][Full Text] [Related]
8. Identification of the major expressed S-layer and cell surface-layer-related proteins in the model methanogenic archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A. Rohlin L; Leon DR; Kim U; Loo JA; Ogorzalek Loo RR; Gunsalus RP Archaea; 2012; 2012():873589. PubMed ID: 22666082 [TBL] [Abstract][Full Text] [Related]
9. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri. Kulkarni G; Mand TD; Metcalf WW mBio; 2018 Jul; 9(4):. PubMed ID: 29970471 [TBL] [Abstract][Full Text] [Related]
10. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060 [TBL] [Abstract][Full Text] [Related]
11. Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from Methanosarcina barkeri Fusaro. Michel R; Massanz C; Kostka S; Richter M; Fiebig K Eur J Biochem; 1995 Nov; 233(3):727-35. PubMed ID: 8521835 [TBL] [Abstract][Full Text] [Related]
12. Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Meuer J; Bartoschek S; Koch J; Künkel A; Hedderich R Eur J Biochem; 1999 Oct; 265(1):325-35. PubMed ID: 10491189 [TBL] [Abstract][Full Text] [Related]
13. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri. Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY mBio; 2019 Mar; 10(2):. PubMed ID: 30862748 [TBL] [Abstract][Full Text] [Related]
14. Development of β -lactamase as a tool for monitoring conditional gene expression by a tetracycline-riboswitch in Methanosarcina acetivorans. Demolli S; Geist MM; Weigand JE; Matschiavelli N; Suess B; Rother M Archaea; 2014; 2014():725610. PubMed ID: 24678266 [TBL] [Abstract][Full Text] [Related]
15. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. Rother M; Boccazzi P; Bose A; Pritchett MA; Metcalf WW J Bacteriol; 2005 Aug; 187(16):5552-9. PubMed ID: 16077099 [TBL] [Abstract][Full Text] [Related]
16. Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Gö1. Deppenmeier U Arch Microbiol; 1995 Nov; 164(5):370-6. PubMed ID: 8572889 [TBL] [Abstract][Full Text] [Related]
17. An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Künkel A; Vorholt JA; Thauer RK; Hedderich R Eur J Biochem; 1998 Mar; 252(3):467-76. PubMed ID: 9546662 [TBL] [Abstract][Full Text] [Related]
18. Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum. Chien YT; Zinder SH J Bacteriol; 1994 Nov; 176(21):6590-8. PubMed ID: 7961410 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Deppenmeier U; Blaut M; Lentes S; Herzberg C; Gottschalk G Eur J Biochem; 1995 Jan; 227(1-2):261-9. PubMed ID: 7851393 [TBL] [Abstract][Full Text] [Related]
20. The trimethylamine methyltransferase gene and multiple dimethylamine methyltransferase genes of Methanosarcina barkeri contain in-frame and read-through amber codons. Paul L; Ferguson DJ; Krzycki JA J Bacteriol; 2000 May; 182(9):2520-9. PubMed ID: 10762254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]