These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
899 related articles for article (PubMed ID: 19201865)
1. Unique phenotype of human tonsillar and in vitro-induced FOXP3+CD8+ T cells. Siegmund K; Rückert B; Ouaked N; Bürgler S; Speiser A; Akdis CA; Schmidt-Weber CB J Immunol; 2009 Feb; 182(4):2124-30. PubMed ID: 19201865 [TBL] [Abstract][Full Text] [Related]
2. Peripheral CD4+CD8+cells are the activated T cells expressed granzyme B (GrB), Foxp3, interleukin 17 (IL-17), at higher levels in Th1/Th2 cytokines. Xie D; Hai B; Xie X; Liu L; Ayello J; Ma X; Zhang J Cell Immunol; 2009; 259(2):157-64. PubMed ID: 19616200 [TBL] [Abstract][Full Text] [Related]
3. Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Jarvis LB; Matyszak MK; Duggleby RC; Goodall JC; Hall FC; Gaston JS Eur J Immunol; 2005 Oct; 35(10):2896-908. PubMed ID: 16180249 [TBL] [Abstract][Full Text] [Related]
4. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Aarts-Riemens T; Emmelot ME; Verdonck LF; Mutis T Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171 [TBL] [Abstract][Full Text] [Related]
5. Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T cells by continuous antigen stimulation. Mahic M; Henjum K; Yaqub S; Bjørnbeth BA; Torgersen KM; Taskén K; Aandahl EM Eur J Immunol; 2008 Mar; 38(3):640-6. PubMed ID: 18266270 [TBL] [Abstract][Full Text] [Related]
6. Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions. Okui T; Ito H; Honda T; Amanuma R; Yoshie H; Yamazaki K Oral Microbiol Immunol; 2008 Feb; 23(1):49-54. PubMed ID: 18173798 [TBL] [Abstract][Full Text] [Related]
8. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Chaput N; Louafi S; Bardier A; Charlotte F; Vaillant JC; Ménégaux F; Rosenzwajg M; Lemoine F; Klatzmann D; Taieb J Gut; 2009 Apr; 58(4):520-9. PubMed ID: 19022917 [TBL] [Abstract][Full Text] [Related]
9. Detection of Foxp3 protein expression in porcine T lymphocytes. Käser T; Gerner W; Hammer SE; Patzl M; Saalmüller A Vet Immunol Immunopathol; 2008 Sep; 125(1-2):92-101. PubMed ID: 18565594 [TBL] [Abstract][Full Text] [Related]
10. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Kiniwa Y; Miyahara Y; Wang HY; Peng W; Peng G; Wheeler TM; Thompson TC; Old LJ; Wang RF Clin Cancer Res; 2007 Dec; 13(23):6947-58. PubMed ID: 18056169 [TBL] [Abstract][Full Text] [Related]
11. Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells--identification of Foxp3Δ7 in human regulatory T cells. Kaur G; Goodall JC; Jarvis LB; Hill Gaston JS Mol Immunol; 2010; 48(1-3):321-32. PubMed ID: 20688398 [TBL] [Abstract][Full Text] [Related]
12. FOXP3 expression in blood, synovial fluid and synovial tissue during inflammatory arthritis and intra-articular corticosteroid treatment. Raghavan S; Cao D; Widhe M; Roth K; Herrath J; Engström M; Roncador G; Banham AH; Trollmo C; Catrina AI; Malmström V Ann Rheum Dis; 2009 Dec; 68(12):1908-15. PubMed ID: 19066178 [TBL] [Abstract][Full Text] [Related]
13. B7+ iris pigment epithelial cells convert T cells into CTLA-4+, B7-expressing CD8+ regulatory T cells. Sugita S; Keino H; Futagami Y; Takase H; Mochizuki M; Stein-Streilein J; Streilein JW Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5376-84. PubMed ID: 17122127 [TBL] [Abstract][Full Text] [Related]
14. FOXP3 expressing CD127lo CD4+ T cells inversely correlate with CD38+ CD8+ T cell activation levels in primary HIV-1 infection. Ndhlovu LC; Loo CP; Spotts G; Nixon DF; Hecht FM J Leukoc Biol; 2008 Feb; 83(2):254-62. PubMed ID: 17982112 [TBL] [Abstract][Full Text] [Related]
15. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Shen LS; Wang J; Shen DF; Yuan XL; Dong P; Li MX; Xue J; Zhang FM; Ge HL; Xu D Clin Immunol; 2009 Apr; 131(1):109-18. PubMed ID: 19153062 [TBL] [Abstract][Full Text] [Related]
16. CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity. Mayer CT; Floess S; Baru AM; Lahl K; Huehn J; Sparwasser T Eur J Immunol; 2011 Mar; 41(3):716-25. PubMed ID: 21312192 [TBL] [Abstract][Full Text] [Related]
17. Role of bone marrow stromal cells in the generation of human CD8+ regulatory T cells. Poggi A; Zocchi MR Hum Immunol; 2008 Nov; 69(11):755-9. PubMed ID: 18817823 [TBL] [Abstract][Full Text] [Related]
18. CD8(+)Foxp3(+) T cells in peripheral blood of relapsing-remitting multiple sclerosis patients. Frisullo G; Nociti V; Iorio R; Plantone D; Patanella AK; Tonali PA; Batocchi AP Hum Immunol; 2010 May; 71(5):437-41. PubMed ID: 20138197 [TBL] [Abstract][Full Text] [Related]
19. Subpopulations of equine blood lymphocytes expressing regulatory T cell markers. Robbin MG; Wagner B; Noronha LE; Antczak DF; de Mestre AM Vet Immunol Immunopathol; 2011 Mar; 140(1-2):90-101. PubMed ID: 21208665 [TBL] [Abstract][Full Text] [Related]
20. Overlap between molecular markers expressed by naturally occurring CD4+CD25+ regulatory T cells and antigen specific CD4+CD25+ and CD8+CD28- T suppressor cells. Scotto L; Naiyer AJ; Galluzzo S; Rossi P; Manavalan JS; Kim-Schulze S; Fang J; Favera RD; Cortesini R; Suciu-Foca N Hum Immunol; 2004 Nov; 65(11):1297-306. PubMed ID: 15556680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]