BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19201970)

  • 1. Cell wall polysaccharide synthases are located in detergent-resistant membrane microdomains in oomycetes.
    Briolay A; Bouzenzana J; Guichardant M; Deshayes C; Sindt N; Bessueille L; Bulone V
    Appl Environ Microbiol; 2009 Apr; 75(7):1938-49. PubMed ID: 19201970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis.
    Bessueille L; Sindt N; Guichardant M; Djerbi S; Teeri TT; Bulone V
    Biochem J; 2009 Apr; 420(1):93-103. PubMed ID: 19216717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.
    Guerriero G; Avino M; Zhou Q; Fugelstad J; Clergeot PH; Bulone V
    PLoS Pathog; 2010 Aug; 6(8):e1001070. PubMed ID: 20865175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the first Oomycete annexin as a (1-->3)-beta-D-glucan synthase activator.
    Bouzenzana J; Pelosi L; Briolay A; Briolay J; Bulone V
    Mol Microbiol; 2006 Oct; 62(2):552-65. PubMed ID: 16978258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity.
    Fugelstad J; Bouzenzana J; Djerbi S; Guerriero G; Ezcurra I; Teeri TT; Arvestad L; Bulone V
    Fungal Genet Biol; 2009 Oct; 46(10):759-67. PubMed ID: 19589393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies.
    Kuang G; Liang L; Brown C; Wang Q; Bulone V; Tu Y
    Phys Chem Chem Phys; 2016 Feb; 18(7):5281-90. PubMed ID: 26818595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of the pleckstrin homology domain of a cellulose synthase from the oomycete Saprolegnia monoica.
    Fugelstad J; Brown C; Hukasova E; Sundqvist G; Lindqvist A; Bulone V
    Biochem Biophys Res Commun; 2012 Jan; 417(4):1248-53. PubMed ID: 22226909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases.
    Brown C; Szpryngiel S; Kuang G; Srivastava V; Ye W; McKee LS; Tu Y; Mäler L; Bulone V
    FEBS J; 2016 Aug; 283(16):3072-88. PubMed ID: 27363606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P₃ with the pleckstrin homology domain of an oomycete cellulose synthase.
    Kuang G; Bulone V; Tu Y
    Sci Rep; 2016 Feb; 6():20555. PubMed ID: 26857031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic analysis of plasma membranes from the fish pathogen
    Mélida H; Kappel L; Ullah SF; Bulone V; Srivastava V
    Microbiol Spectr; 2024 Jun; ():e0034824. PubMed ID: 38888349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The properties and localization of Saprolegnia monoica chitin synthase differ from those of other fungi.
    Leal-Morales CA; Gay L; Fèvre M; Bartnicki-García S
    Microbiology (Reading); 1997 Jul; 143 ( Pt 7)():2473-2483. PubMed ID: 9245828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici.
    Schuster M; Guiu-Aragones C; Steinberg G
    Fungal Genet Biol; 2020 Feb; 135():103286. PubMed ID: 31672687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MIT domain of chitin synthase 1 from the oomycete
    Brown C; Patrick J; Liebau J; Mäler L
    Biochem Biophys Rep; 2022 Jul; 30():101229. PubMed ID: 35198741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHS2, a chitin synthase gene from the oomycete Saprolegnia monoica.
    Mort-Bontemps M; Gay L; Févre M
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():2009-2020. PubMed ID: 9202477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast cell permeabilization by osmotic shock allows determination of enzymatic activities in situ.
    Crotti LB; Drgon T; Cabib E
    Anal Biochem; 2001 May; 292(1):8-16. PubMed ID: 11319811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel 1,3-β-glucan synthase from the oomycete
    Billon-Grand G; Marais MF; Joseleau JP; Girard V; Gay L; Fãvre M
    Microbiology (Reading); 1997 Oct; 143(10):3175-3183. PubMed ID: 33752283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis.
    Adam RM; Yang W; Di Vizio D; Mukhopadhyay NK; Steen H
    BMC Cell Biol; 2008 Jun; 9():30. PubMed ID: 18534013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR; De Oliveira Carvalho P; Riske KA; Barbosa Rde M; De Paula E; Domingues CC
    Mol Membr Biol; 2014 Sep; 31(6):195-205. PubMed ID: 25222860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota).
    Klinter S; Bulone V; Arvestad L
    Mol Phylogenet Evol; 2019 Oct; 139():106558. PubMed ID: 31288106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.