These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 19202018)
1. Speciation and isotopic exchangeability of nickel in soil solution. Nolan AL; Ma Y; Lombi E; McLaughlin MJ J Environ Qual; 2009; 38(2):485-92. PubMed ID: 19202018 [TBL] [Abstract][Full Text] [Related]
2. Nickel speciation in the presence of different sources and fractions of dissolved organic matter. Doig LE; Liber K Ecotoxicol Environ Saf; 2007 Feb; 66(2):169-77. PubMed ID: 16497376 [TBL] [Abstract][Full Text] [Related]
3. Speciation of nickel in surface waters measured with the Donnan membrane technique. Van Laer L; Smolders E; Degryse F; Janssen C; De Schamphelaere KA Anal Chim Acta; 2006 Sep; 578(2):195-202. PubMed ID: 17723712 [TBL] [Abstract][Full Text] [Related]
4. Assessment of lead availability in contaminated soil using isotope dilution techniques. Tongtavee N; Shiowatana J; McLaren RG; Gray CW Sci Total Environ; 2005 Sep; 348(1-3):244-56. PubMed ID: 16162328 [TBL] [Abstract][Full Text] [Related]
5. Speciation of zinc in contaminated soils. Stephan CH; Courchesne F; Hendershot WH; McGrath SP; Chaudri AM; Sappin-Didier V; Sauvé S Environ Pollut; 2008 Sep; 155(2):208-16. PubMed ID: 18222022 [TBL] [Abstract][Full Text] [Related]
6. DGT use in contaminated site characterization. The importance of heavy metal site specific behaviour. Ruello ML; Sileno M; Sani D; Fava G Chemosphere; 2008 Jan; 70(6):1135-40. PubMed ID: 17904196 [TBL] [Abstract][Full Text] [Related]
7. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH. Xie H; Huang ZY; Cao YL; Cai C; Zeng XC; Li J J Environ Monit; 2012 Aug; 14(8):2230-7. PubMed ID: 22772653 [TBL] [Abstract][Full Text] [Related]
8. Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures. Doig LE; Liber K Aquat Toxicol; 2006 Mar; 76(3-4):203-16. PubMed ID: 16297459 [TBL] [Abstract][Full Text] [Related]
9. Assessing nickel bioavailability in smelter-contaminated soils. Everhart JL; McNear D; Peltier E; van der Lelie D; Chaney RL; Sparks DL Sci Total Environ; 2006 Aug; 367(2-3):732-44. PubMed ID: 16499951 [TBL] [Abstract][Full Text] [Related]
10. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
11. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Nolan AL; Mclaughlin MJ; Mason SD Environ Sci Technol; 2003 Jan; 37(1):90-8. PubMed ID: 12542296 [TBL] [Abstract][Full Text] [Related]
12. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability. Mao LC; Young SD; Tye AM; Bailey EH Environ Pollut; 2017 Dec; 231(Pt 2):1529-1542. PubMed ID: 28947320 [TBL] [Abstract][Full Text] [Related]
13. Aging of nickel added to soils as predicted by soil pH and time. Ma Y; Lombi E; McLaughlin MJ; Oliver IW; Nolan AL; Oorts K; Smolders E Chemosphere; 2013 Aug; 92(8):962-8. PubMed ID: 23557724 [TBL] [Abstract][Full Text] [Related]
14. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil. Bhavsar SP; Gandhi N; Diamond ML Chemosphere; 2008 Jan; 70(5):914-24. PubMed ID: 17707882 [TBL] [Abstract][Full Text] [Related]
15. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies. Bollen A; Wenke A; Biester H Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134 [TBL] [Abstract][Full Text] [Related]
16. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Almås AR; Lombnaes P; Sogn TA; Mulder J Chemosphere; 2006 Mar; 62(10):1647-55. PubMed ID: 16084561 [TBL] [Abstract][Full Text] [Related]
17. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Ko I; Chang YY; Lee CH; Kim KW J Hazard Mater; 2005 Dec; 127(1-3):1-13. PubMed ID: 16122872 [TBL] [Abstract][Full Text] [Related]
18. The role of natural purified humic acids in modifying mercury accessibility in water and soil. Cattani I; Zhang H; Beone GM; Del Re AA; Boccelli R; Trevisan M J Environ Qual; 2009; 38(2):493-501. PubMed ID: 19202019 [TBL] [Abstract][Full Text] [Related]
19. Assessing the fate of radioactive nickel in cultivated soil cores. Denys S; Echevarria G; Florentin L; Leclerc E; Morel JL J Environ Radioact; 2009 Oct; 100(10):884-9. PubMed ID: 19632751 [TBL] [Abstract][Full Text] [Related]
20. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. Nolan AL; Zhang H; McLaughlin MJ J Environ Qual; 2005; 34(2):496-507. PubMed ID: 15758102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]