These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19202060)

  • 1. Counting the number of releasable synaptic vesicles in a presynaptic terminal.
    Ikeda K; Bekkers JM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2945-50. PubMed ID: 19202060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation-induced formation of the reserve pool of vesicles in Drosophila motor boutons.
    Akbergenova Y; Bykhovskaia M
    J Neurophysiol; 2009 May; 101(5):2423-33. PubMed ID: 19279147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Most vesicles in a central nerve terminal participate in recycling.
    Xue L; Sheng J; Wu XS; Wu W; Luo F; Shin W; Chiang HC; Wu LG
    J Neurosci; 2013 May; 33(20):8820-6. PubMed ID: 23678124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants underlying the high efficacy of synaptic transmission and plasticity at synaptic boutons in layer 4 of the adult rat 'barrel cortex'.
    Rollenhagen A; Klook K; Sätzler K; Qi G; Anstötz M; Feldmeyer D; Lübke JH
    Brain Struct Funct; 2015 Nov; 220(6):3185-209. PubMed ID: 25084745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exocytosis and endocytosis of synaptic vesicles and functional roles of vesicle pools: lessons from the Drosophila neuromuscular junction.
    Kuromi H; Kidokoro Y
    Neuroscientist; 2005 Apr; 11(2):138-47. PubMed ID: 15746382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Pathways for the Activity-Dependent Growth and Differentiation of Synaptic Boutons in
    Vasin A; Sabeva N; Torres C; Phan S; Bushong EA; Ellisman MH; Bykhovskaia M
    eNeuro; 2019; 6(4):. PubMed ID: 31387877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapsin maintains the reserve vesicle pool and spatial segregation of the recycling pool in Drosophila presynaptic boutons.
    Akbergenova Y; Bykhovskaia M
    Brain Res; 2007 Oct; 1178():52-64. PubMed ID: 17904536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation and packaging of synaptic vesicles as related to recruitment within glutamatergic synapses.
    Wu WH; Cooper RL
    Neuroscience; 2012 Dec; 225():185-98. PubMed ID: 22929013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner.
    Fornasiero EF; Raimondi A; Guarnieri FC; Orlando M; Fesce R; Benfenati F; Valtorta F
    J Neurosci; 2012 Aug; 32(35):12214-27. PubMed ID: 22933803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic vesicles in rat hippocampal boutons recycle to different pools in a use-dependent fashion.
    Vanden Berghe P; Klingauf J
    J Physiol; 2006 May; 572(Pt 3):707-20. PubMed ID: 16439431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional architecture of presynaptic terminal cytomatrix.
    Siksou L; Rostaing P; Lechaire JP; Boudier T; Ohtsuka T; Fejtová A; Kao HT; Greengard P; Gundelfinger ED; Triller A; Marty S
    J Neurosci; 2007 Jun; 27(26):6868-77. PubMed ID: 17596435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.
    García-Morales V; Montero F; Moreno-López B
    Neuropharmacology; 2015 May; 92():69-79. PubMed ID: 25595101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent calcium dependence of vesicle recruitment.
    Ritzau-Jost A; Jablonski L; Viotti J; Lipstein N; Eilers J; Hallermann S
    J Physiol; 2018 Oct; 596(19):4693-4707. PubMed ID: 29928766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization and fusion of a non-recycling pool of synaptic vesicles under conditions of endocytic blockade.
    Poskanzer KE; Davis GW
    Neuropharmacology; 2004 Oct; 47(5):714-23. PubMed ID: 15458843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency of Spontaneous Neurotransmission at Individual Boutons Corresponds to the Size of the Readily Releasable Pool of Vesicles.
    Ralowicz AJ; Hokeness S; Hoppa MB
    J Neurosci; 2024 May; 44(18):. PubMed ID: 38383495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses.
    Midorikawa M; Sakaba T
    Neuron; 2017 Dec; 96(5):1033-1040.e3. PubMed ID: 29103807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule and Actin Differentially Regulate Synaptic Vesicle Cycling to Maintain High-Frequency Neurotransmission.
    Piriya Ananda Babu L; Wang HY; Eguchi K; Guillaud L; Takahashi T
    J Neurosci; 2020 Jan; 40(1):131-142. PubMed ID: 31767677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.
    Egashira Y; Takase M; Watanabe S; Ishida J; Fukamizu A; Kaneko R; Yanagawa Y; Takamori S
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10702-7. PubMed ID: 27601664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-Dependent Nucleation of Dynamic Microtubules at Presynaptic Boutons Controls Neurotransmission.
    Qu X; Kumar A; Blockus H; Waites C; Bartolini F
    Curr Biol; 2019 Dec; 29(24):4231-4240.e5. PubMed ID: 31813605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression.
    Sullivan JM
    J Neurophysiol; 2007 Jan; 97(1):948-50. PubMed ID: 17079345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.