These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19202077)

  • 1. Origin of the change in solvation enthalpy of the peptide group when neighboring peptide groups are added.
    Avbelj F; Baldwin RL
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3137-41. PubMed ID: 19202077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited validity of group additivity for the folding energetics of the peptide group.
    Avbelj F; Baldwin RL
    Proteins; 2006 May; 63(2):283-9. PubMed ID: 16288449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide.
    Totrov M; Abagyan R
    Biopolymers; 2001; 60(2):124-33. PubMed ID: 11455546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between peptide backbone solvation and the energetics of peptide hydrogen bonds.
    Baldwin RL
    Biophys Chem; 2002 Dec; 101-102():203-10. PubMed ID: 12488001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of the neighboring residue effect on peptide backbone conformation.
    Avbelj F; Baldwin RL
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10967-72. PubMed ID: 15254296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive transfer free energies of the peptide backbone unit that are independent of the model compound and the choice of concentration scale.
    Auton M; Bolen DW
    Biochemistry; 2004 Feb; 43(5):1329-42. PubMed ID: 14756570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of cyclic dipeptide crystal packing and solvation.
    Brady GP; Sharp KA
    Biophys J; 1997 Feb; 72(2 Pt 1):913-27. PubMed ID: 9017216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desolvation penalty for burying hydrogen-bonded peptide groups in protein folding.
    Baldwin RL
    J Phys Chem B; 2010 Dec; 114(49):16223-7. PubMed ID: 20961078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonpolar Solvation Free Energy from Proximal Distribution Functions.
    Ou SC; Drake JA; Pettitt BM
    J Phys Chem B; 2017 Apr; 121(15):3555-3564. PubMed ID: 27992228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the energetics of helical peptide orientation in membranes.
    Sengupta D; Meinhold L; Langosch D; Ullmann GM; Smith JC
    Proteins; 2005 Mar; 58(4):913-22. PubMed ID: 15657932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects.
    Levy RM; Gallicchio E
    Annu Rev Phys Chem; 1998; 49():531-67. PubMed ID: 9933909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation free energy of the peptide group: its model dependence and implications for the additive-transfer free-energy model of protein stability.
    Tomar DS; Asthagiri D; Weber V
    Biophys J; 2013 Sep; 105(6):1482-90. PubMed ID: 24048000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M; Pisliakov AV; Warshel A
    Proteins; 2006 Sep; 64(4):829-44. PubMed ID: 16779836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T; van der Vegt NF
    J Chem Phys; 2015 Apr; 142(14):144502. PubMed ID: 25877585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, aminoacids, and peptides.
    Auton M; Bolen DW; Rösgen J
    Proteins; 2008 Dec; 73(4):802-13. PubMed ID: 18498104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.