BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19202078)

  • 1. Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: Involvement of the circadian pacemaker.
    Hu K; Van Someren EJ; Shea SA; Scheer FA
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2490-4. PubMed ID: 19202078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease in scale invariance of activity fluctuations with aging and in patients with suprasellar tumors.
    Joustra SD; Gu C; Rohling JHT; Pickering L; Klose M; Hu K; Scheer FA; Feldt-Rasmussen U; Jennum PJ; Pereira AM; Biermasz NR; Meijer JH
    Chronobiol Int; 2018 Mar; 35(3):368-377. PubMed ID: 29182371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endogenous circadian pacemaker imparts a scale-invariant pattern of heart rate fluctuations across time scales spanning minutes to 24 hours.
    Hu K; Scheer FA; Buijs RM; Shea SA
    J Biol Rhythms; 2008 Jun; 23(3):265-73. PubMed ID: 18487418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease.
    Wu YH; Swaab DF
    Sleep Med; 2007 Sep; 8(6):623-36. PubMed ID: 17383938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The suprachiasmatic nucleus functions beyond circadian rhythm generation.
    Hu K; Scheer FA; Ivanov PCh; Buijs RM; Shea SA
    Neuroscience; 2007 Nov; 149(3):508-17. PubMed ID: 17920204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human pineal gland and melatonin in aging and Alzheimer's disease.
    Wu YH; Swaab DF
    J Pineal Res; 2005 Apr; 38(3):145-52. PubMed ID: 15725334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia.
    Hu K; Harper DG; Shea SA; Stopa EG; Scheer FA
    Sci Rep; 2013; 3():2229. PubMed ID: 23863985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular coupling determines scale-invariant behavior of neurons in suprachiasmatic nucleus.
    Zhou J; Gu X; Gu C; Yang H; Weng T; Rohling JHT
    Chronobiol Int; 2020 Dec; 37(12):1669-1676. PubMed ID: 32967468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease.
    Witting W; Kwa IH; Eikelenboom P; Mirmiran M; Swaab DF
    Biol Psychiatry; 1990 Mar; 27(6):563-72. PubMed ID: 2322616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cholinergic system, circadian rhythmicity, and time memory.
    Hut RA; Van der Zee EA
    Behav Brain Res; 2011 Aug; 221(2):466-80. PubMed ID: 21115064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans.
    Wang JL; Lim AS; Chiang WY; Hsieh WH; Lo MT; Schneider JA; Buchman AS; Bennett DA; Hu K; Saper CB
    Ann Neurol; 2015 Aug; 78(2):317-22. PubMed ID: 25921596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Are active neurons a better defense against aging in Alzheimer's disease?].
    Lucassen PJ; van Someren EJ; Swaab DF
    Tijdschr Gerontol Geriatr; 1998 Aug; 29(4):177-84. PubMed ID: 9746932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and SCN neurophysiological disruption in the Tg-SwDI mouse model of Alzheimer's disease.
    Paul JR; Munir HA; van Groen T; Gamble KL
    Neurobiol Dis; 2018 Jun; 114():194-200. PubMed ID: 29540298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pineal clock gene oscillation is disturbed in Alzheimer's disease, due to functional disconnection from the "master clock".
    Wu YH; Fischer DF; Kalsbeek A; Garidou-Boof ML; van der Vliet J; van Heijningen C; Liu RY; Zhou JN; Swaab DF
    FASEB J; 2006 Sep; 20(11):1874-6. PubMed ID: 16818472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer's disease.
    Mirmiran M; Swaab DF; Kok JH; Hofman MA; Witting W; Van Gool WA
    Prog Brain Res; 1992; 93():151-62; discussion 162-3. PubMed ID: 1480747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian locomotor activity and core-body temperature rhythms in Alzheimer's disease.
    Satlin A; Volicer L; Stopa EG; Harper D
    Neurobiol Aging; 1995; 16(5):765-71. PubMed ID: 8532109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep-Wake Profile in Dementia with Lewy Bodies, Alzheimer's Disease, and Normal Aging.
    Cagnin A; Fragiacomo F; Camporese G; Turco M; Bussè C; Ermani M; Montagnese S
    J Alzheimers Dis; 2017; 55(4):1529-1536. PubMed ID: 27886007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep and Alzheimer's disease: A pivotal role for the suprachiasmatic nucleus.
    Van Erum J; Van Dam D; De Deyn PP
    Sleep Med Rev; 2018 Aug; 40():17-27. PubMed ID: 29102282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats.
    Hu K; Scheer FA; Buijs RM; Shea SA
    Cardiovasc Res; 2008 Oct; 80(1):62-8. PubMed ID: 18539630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice.
    Gu C; Coomans CP; Hu K; Scheer FA; Stanley HE; Meijer JH
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2320-4. PubMed ID: 25675516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.